• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 30 Issue 1
Mar.  2011
Turn off MathJax
Article Contents
XUE Xian-wu, CHEN Xi, QIN Nian-xiu, ZHAO Xu-sheng, SHI Peng. Correlation analysis between low-flow recession coefficient and surface landform characteristics in karst basin[J]. CARSOLOGICA SINICA, 2011, 30(1): 41-46. doi: 10.3969/j.issn.1001-4810.2011.01.007
Citation: XUE Xian-wu, CHEN Xi, QIN Nian-xiu, ZHAO Xu-sheng, SHI Peng. Correlation analysis between low-flow recession coefficient and surface landform characteristics in karst basin[J]. CARSOLOGICA SINICA, 2011, 30(1): 41-46. doi: 10.3969/j.issn.1001-4810.2011.01.007

Correlation analysis between low-flow recession coefficient and surface landform characteristics in karst basin

doi: 10.3969/j.issn.1001-4810.2011.01.007
  • Received Date: 2010-08-23
  • Publish Date: 2011-03-25
  • In light of the storage and adjustment for runoff by topography and landform features in dry season, daily observed flow data during dry seasons from19 hydrology stations located up the Sinan station of the Wujiang River are analyzed to find out base flow recession law. According to the characteristics of low flow recession curve, the base flow is divided into two parts, fast fissure flow and slow fissure flow, and the corresponding recession coefficient is calculated. Based on the single factor and multi-factor regression analysis between the recession coefficient and the basin's landform features, elevation eigenvalue and topographic index eigenvalue are determined as the main factors affecting the recession coefficient. The dual non-linear regression equations are established with these two eigenvalues and the recession coefficient(a1=0.781-0.266?ln(x)+0.633?ln(y)and a2=0.061-0.016?ln(x)+0.044?ln(y)),their confidence intervals are greater than99%,so these two curves fit significantly and these equations can be used to regionalize the recession coefficients and to provide the basis for hydrological simulation in ungauged basins.

     

  • loading
  • [1]
    Baedke S J, Krothe N C.Derivation of effective hydraulic parameters of a karst aquifer from discharge hydrograph analysis[J]. Water Resources Research, 2001, 37(1):13-19.
    [2]
    RoveyII CW. Assessing flow systems in carbonate aquifers using scale effects in hydraulic conductivity[J]. Environmental Geology,1994,24:244-253.
    [3]
    李秀云,汤奇成,傅肃性.中国河流的枯水研究[M].北京:海洋出版社,1993.
    [4]
    Wright E. Catchment characteristics influencing low flows[J]. Water and Water Engineering,1970,74(11):468-471.
    [5]
    李秀云,傅肃性,宋现锋,等.遥感枯水下垫面要素分析与估算应用研究——以澜沧江支流黑江的景谷河流域为例[J].资源科学,1999,21(3):6-10.
    [6]
    Vogel Richard M, Kroll Charles N. Estimation of base flow recession constants[J]. Water Resources Management,1996,10(4):303-320.
    [7]
    Zarrin H,Sharifi F,Vafakhah M,et al. Regional analysis of low flow in Karkheh and Karoon Watersheds[J].Journal of Applied Sciences,2009,9(6):1141-1146.
    [8]
    罗书文,梁虹,杨桃,等.基于分形理论的喀斯特流域枯水资源影响因素分析[J].安徽水利水电职业技术学院学报,2009,9(1):8-10.
    [9]
    李瑞玲.贵州岩溶地区土地石漠化形成的自然背景及其空间地域分异[D].贵阳:中国科学院地球化学研究所,2004:15-20.
    [10]
    Nash J E,Sutcliffe J V.Riverflow forecasting through conceptual models partI——A discussion of principles[J].Journal of Hydrology,1970,10(3):282-290.
    [11]
    高祥宝,董寒青.数据分析与SPSS应用[M].北京:清华大学出版社,2007:212-249.
    [12]
    李红霞.无径流资料流域的水文预报研究[D].大连:大连理工大学,2009:37-38.
    [13]
    俞锦标,章海生.贵州普定岩溶地貌[J].中国岩溶,1988,7(2):163-172.
    [14]
    王在高,梁虹,杨明德.喀斯特流域地貌类型对枯水径流的影响——以贵州省河流为例[J].地理研究,2002,21(4):441-448.
    [15]
    汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005:207-208.
    [16]
    薛显武,陈喜,张志才,等.基于地形因子特征值的喀斯特流域地貌类型判别[J].中国岩溶,2009,28(2):175-180.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2043) PDF downloads(2318) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return