• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 29 Issue 2
Jun.  2010
Turn off MathJax
Article Contents
ZHENG Chang-tong, LIANG Hong. Comprehensive evaluation on carrying capacity of water resources based on the artificial neural network — A case study in Guizhou Province[J]. CARSOLOGICA SINICA, 2010, 29(2): 170-175. doi: 10.3969/j.issn.1001-4810.2010.02.011
Citation: ZHENG Chang-tong, LIANG Hong. Comprehensive evaluation on carrying capacity of water resources based on the artificial neural network — A case study in Guizhou Province[J]. CARSOLOGICA SINICA, 2010, 29(2): 170-175. doi: 10.3969/j.issn.1001-4810.2010.02.011

Comprehensive evaluation on carrying capacity of water resources based on the artificial neural network — A case study in Guizhou Province

doi: 10.3969/j.issn.1001-4810.2010.02.011
  • Received Date: 2009-09-20
  • Publish Date: 2010-06-25
  • This paper uses BP network to evaluate the water resource carrying capacity in karst area and compares the evaluating results with that calculated by gray relational projection method. Evaluating results of the two methods are similar overall. However, the water resource carrying capacity in Anshun and Tongren calculate d by the two ways is quite different. The result of BP network shows that the water resource carrying capacity in Tongren is the greatest, while Anshun is very small, only higher than Guiyang. But the result of gray relational projection shows that the water resource carrying capacity in Tongren is much lower than that in Anshun. To compare with former research results, it is proves that the method of BP network is more reasonable. By means of Kohonen network, the analyzed results show t hat the amount of water resources and economic level is the dominant factors impacting the water resource carrying capacity. In addition, the population has a greater influence to the water resource carrying capacity in Zunyi. The influence of karst conditions to the water resource carrying capacity in Tongren and Bijie is higher than other regions.

     

  • loading
  • [1]
    冯尚友,刘国全.水资源持续利用框架[J].水科学进展, 1997, 8 (4) : 301-307.
    [2]
    傅春,冯尚友. 水资源持续利用(生态水利)原理探讨[J]. 水科进展, 2 000, 11(4): 436-440.
    [3]
    杨明德,谭明,梁虹. 喀斯特流域水文地貌系统. 北京: 地质出版社[M] . 1998: 2-23.
    [4]
    周亮广,梁虹. 喀斯特地区水资源承载力评价研究——以贵州省为例[J ]. 中国岩溶, 2006, 25(1):23-28.
    [5]
    傅湘. 区域水资源承载力综合评价[J]. 长江流域资源与环境, 1999, 8(2): 168-172.
    [6]
    陈冰. 柴达木盆地水资源承载力方案系统分析[J]. 环境科学, 2000, 21(3): 17-21.
    [7]
    许有鹏. 干旱区水资源承载能力综合评价研究[J]. 自然资源学报, 19 93, 8(3): 229-237.
    [8]
    王顺久,侯玉,张欣莉,等. 流域水资源承载能力的综合评价方法[J]. 水利学报, 2003, (1): 88-92.
    [9]
    苏伟,刘景双,李方. BP神经网络在水资源承载能力预测中的应用[J]. 水利水电技术, 2007, 38(11): 1-4.
    [10]
    王在高,梁虹.岩溶地区水资源承载力指标体系及其理论模型初探[J]. 中国岩溶, 2001, 20(2):144-148.
    [11]
    Korbicz J,Janczk A. A neural network approach to identification on of structural systems[C]. ISIE '96, Proceedings of the IEEE International Symposium on, Industrial Electronics, 1996, 1: 98-103.
    [12]
    徐宏根,马洪超,李德仁. 结合SOM神经网络和混合像元分解的高光谱影像分类方法研究[J]. 遥感学报, 2007, 11(6): 778-786.
    [13]
    Kitahara M,Achenbach J D, Guo Q C. Neural network for crackdepth determination from ultrasonic backscattering data[J]. Review of Progress in Quantitative Nondestructive Evaluation, 1992, (11): 701-708.
    [14]
    Abbas H. M.et al. Neural networks for maximum likelihood clustering[J]. Singal processing, 1994, 36(1): 111-126.
    [15]
    秦莉云,金忠青. 淮河流域水资源承载能力的评价分析[J]. 水文, 2001,21(3): 14-17.
    [16]
    韩力群.人工神经网络教程. 北京: 北京邮电大学出版社[M]. 2006: 78-265.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1833) PDF downloads(1341) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return