• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 29 Issue 2
Jun.  2010
Turn off MathJax
Article Contents
CHEN Xiao-peng, WANG Zhi-hui, ZHANG Zhao-hui. Study on bryophytes in dolomite type mercury mine of Muyouchang in Guizhou, China[J]. CARSOLOGICA SINICA, 2010, 29(2): 162-169. doi: 10.3969/j.issn.1001-4810.2010.02.010
Citation: CHEN Xiao-peng, WANG Zhi-hui, ZHANG Zhao-hui. Study on bryophytes in dolomite type mercury mine of Muyouchang in Guizhou, China[J]. CARSOLOGICA SINICA, 2010, 29(2): 162-169. doi: 10.3969/j.issn.1001-4810.2010.02.010

Study on bryophytes in dolomite type mercury mine of Muyouchang in Guizhou, China

doi: 10.3969/j.issn.1001-4810.2010.02.010
  • Received Date: 2009-12-28
  • Publish Date: 2010-06-25
  • Bryoflores, collected from 6 habitats in dolomite type of Muyouchang Mercury Mine in Guizhou, China is analyzed in the paper. The results prove that (1) the bryophytes in dolomite type of Muyouchang Mercury Mine consists of 85 species, 37 genera, 12 families and the dominate families include Pottiaceae, Bryaceae and Brachytheciaceae. The bryophytes which belong to the three families are fit to g row in dolomite type of Muyouchang Mercury Mine; (2) Pottiaceae, Bryaceae and Br achytheciaceae distribute 4 common habitates which are mullock, waste residue, mine hole and stream. Furthermore, Pottiaceae and Bryaceae grow on waste furnace while Bryaceae and Brachytheciaceae belong to epiphyte; (3) the species similarity coefficients of waste furnace and waste residue, waste residue and stream, waste furnace and stream, waste residue and mine hole, mine hole and stream, waste furnace and mine hole on which bryophytes grow are 0.49, 0.46, 0.45, 0.41, 0.35 and 0.31 respectively which shows that the relationships are proximity. The species similarity coefficients between the bryophytes in mine hole and epiphytic b ryophytes and between epiphytic bryophytes and the bryophytes in stream are 0, which shows that the relationships are not exist; (4) the phytogeographical elements of the bryoflora include North Temperate(27.06%), Endemic to China(24.71%), E astern Asia(17.65%), Tropical Asia(14.12%), Cosmopolitan(7.06%), Pantropical(3.53%), Old World Temperature(2.35%), Tropical Asia and Tropical Australia(1.18%), Tropical Asia and Tropical Africa(1.18%) and Temperate Asia(1.18%); (5) the life forms are short turfs(71.76%), wefts(21.18%), tall turfs(2.35%) and mats(2.35%) as well as annuals(2.35%).

     

  • loading
  • [1]
    Lindqvist O. Special issue of first international on mercury as a global pollutant[J]. Water Air and Soil Pollution, 1991, 56: 1.
    [2]
    Schroeder W H, Munthe J. Atmospheric mercury-an overview[J]. Atmospheric Environment, 1998, 32: 809-822.
    [3]
    Samecka Cymerman A, Kolon K, Kempers A J. Heavy metals in aqua tic bryophytes from the ore mountains(Germany)[J]. Ecotoxicology and Environmental Safety, 2 002, 52: 203-210.
    [4]
    Appleton J D, Williams T M, Breward N, et al. Mercury contamination associated with artisanal gold mining on the island of Mindanao, the Philippines[J].T he Science of the Total Environment, 1999, 228: 95-109.
    [5]
    李平,冯新斌,仇广乐.贵州省务川汞矿区汞污染的初步研究[J.环境化学,2008, 27(1):96-99.
    [6]
    Shaw A J. Metal tolerance in bryophytes[M]//Shaw A J. Heavy Metal Tolerance in Plants: Evolutionary Aspects. Boca Raton, FL: CRC Press, 1990, 133-152.
    [7]
    Shaw A J, Jules E S, Beer S C. Effects of metals on growth morphology and re production of Ceratodon purpureus[J].The Bryologist, 1991, 94: 270-277.
    [8]
    Shaw A J, Albright D. Potential for the evolution of heavy metal tolerance in Bryum argenteum, a moss. II. Generalized tolerances among diverse populations[J]. The Bryologist, 1990, 93: 187-192.
    [9]
    Shaw A J. Population biology of the rare copper moss, Scopelophila cataractae[J]. American Journal of Botany, 1993, 80: 1034-1041.
    [10]
    Shaw A J. Adaptation to metals in widespread and endemic plant s[J]. Environmental Health Perspectives, 1994, 102: 105-108.
    [11]
    Sun S Q, Wang D Y, He W M, et al. Retention capacities of several bryophyte s for Hg(II) with special reference to the elevation and morphology of moss growth[J]. Environmental Monitoring and Assessment, 2007, 133: 399-406.
    [12]
    李平,冯新斌,仇广乐,等.贵州省务川汞矿区土法炼汞过程中汞释放量的估算[J].环境科学,2006,27(5): 837-840.
    [13]
    张朝晖,Pentecost A.法国阿尔卑斯-罗讷(Rhone-Alps)岩溶洞穴弱光带苔藓植物群落研究[J].中国岩溶,2001,20(3):236-240.
    [14]
    张朝晖, Pentecost A.英国钙华苔藓植物区系特征及其主要钙华沉积类型[J].中国岩溶,2002, 21(1): 36-43.
    [15]
    张朝晖, Pentecost A. 英国英格兰西北部和威尔士北部岩溶地区钙华苔藓植物群落研究[J]. 广西植物, 2002, 22(1): 45-49.
    [16]
    张朝晖, Pentecost A. 英格兰洞穴苔藓植物区系特征及其岩溶沉积研究[J]. 西北植物学报, 2002, 22(2): 359-367.
    [17]
    张朝晖, 陈家宽. 桂西南喀斯特瀑布水生苔藓植物生物多样性与生态沉积类型研究[J]. 沉积学报, 2007, 25(4): 603-611.
    [18]
    张朝晖, 陈家宽. 黔中瀑布水生苔藓植物区系及其生物喀斯特沉积生态类型研究[J]. 中国岩溶, 2007, 26(2): 170-177.
    [19]
    张朝晖, 陈家宽, Pentecost A. 法国阿尔卑斯山(Mt. Alps, France) 溪流型喀斯特瀑布水生苔藓植物群落生态研究[J]. 中国岩溶, 2007, 26(1): 24-30.
    [20]
    张朝晖, 陈家宽, Pentecost A. 英格兰喀斯特瀑布苔藓植物水生群落 生态研究[J]. 水生生物学报, 2008, 32(1): 134-140.
    [21]
    Siebert A, Bruns I, Krauss G J, et al. The use of the aquatic moss Fontanels antipyretic L. ex Hew. as a bioindicator for heavy metals[J]. The Science of the Total Environment, 1996, 177: 137-144.
    [22]
    Solberg Y, SelmerOlsen A R. Studies on the chemistry of lichens and mosses.ⅩⅦ. Mercury content of several lichen and moss species collected in Norway[J]. The Bryologist, 1978, 81(1): 144-149.
    [23]
    贵州省地方志编纂委员会. 贵州省志?有色金属工业志[M]. 贵阳: 贵州人民出版社, 2002: 149.
    [24]
    刘平. 贵州主要汞矿床的微量元素特征[J]. 矿床地质, 1994, 13(3) : 250-259.
    [25]
    李平, 冯新斌, 仇广乐, 等. 贵州省务川地区土法炼汞工人汞蒸汽暴露调查及健康影响评价[J]. 生态毒理学报, 2006, 1(1): 30-34.
    [26]
    陈肖鹏, 张朝晖. 贵州木油厂汞矿区4种藓类植物及其基质中重金属元素分析[J]. 西北植物学报, 2009, 29(12): 2535-2541.
    [27]
    Zhang L, Corlett R T. Phytogeography of Hong Kong bryophytes[J]. Journal of Biogeography, 2003, 30: 1329-1337.
    [28]
    Zhang Z H. Bryoflora and some speleothems of karst caves in Guizhou, S. W. China[M]//Switzerland, Proceedings of the 12th International Congress of Speleology(Vo1.3:Biospeology).1997: 297-300.
    [29]
    张朝晖, 王智慧, 祝安. 黄果树喀斯特洞穴群苔藓植物岩溶的初步研究[J]. 中国岩溶, 1996, 15(3): 224-231.
    [30]
    M?gdefrau K.Life forms of bryophytes[C]//Smith A J. Bryophytes ecology[M]. New York: Chapman & Hall, 1982: 45-59.
    [31]
    王智慧, 张朝晖, 钟本固. 贵州龙宫石灰岩和砂页岩苔藓植物的比较研究[J]. 贵州林业科技, 1995, 23(3): 30-33.
    [32]
    王荷生. 中国种子植物特有属的数量分析[J]. 植物分类学报, 1985, 23(4): 241-258.
    [33]
    江洪, 张朝晖. 贵州豹子洞石灰岩与红土型金矿藓类植物比较研究[J ].中国岩溶, 2007, 26(1): 31-36.
    [34]
    陈肖鹏, 张朝晖. 黔西北两铜矿4种藓类植物重金属元素分析[J]. 武汉植物学研究, 2010, 28(2): 186-190.
    [35]
    陈肖鹏, 张朝晖. 贵州某铜矿4种苔藓植物及其基质重金属元素分析[J ]. 黄金, 2010, 31(3): 48-52.
    [36]
    曹同, 高谦, 付星, 等. 苔藓植物的生物多样性及其保护[J]. 生态学杂志, 1997, 16(2): 47-52, 72.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1803) PDF downloads(1418) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return