• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
GONG Meng, YANG Xunlin, GE Xiaoyan, ZHOU Wenming, WANG Sinan, LI Guofeng, XIANG Wanli. Monsoon climate variability over the past century recorded by laminae stalagmite δ18O from southeastern Chongqing,China[J]. CARSOLOGICA SINICA, 2025, 44(4): 777-789. doi: 10.11932/karst2025y008
Citation: GONG Meng, YANG Xunlin, GE Xiaoyan, ZHOU Wenming, WANG Sinan, LI Guofeng, XIANG Wanli. Monsoon climate variability over the past century recorded by laminae stalagmite δ18O from southeastern Chongqing,China[J]. CARSOLOGICA SINICA, 2025, 44(4): 777-789. doi: 10.11932/karst2025y008

Monsoon climate variability over the past century recorded by laminae stalagmite δ18O from southeastern Chongqing,China

doi: 10.11932/karst2025y008
  • Received Date: 2024-12-03
  • Accepted Date: 2025-05-30
  • Rev Recd Date: 2025-04-30
  • Available Online: 2025-11-07
  • This study adopted the stalagmite sample TK22-1 collected from Tiankeng Cave in Youyang Autonomous County, Chongqing, China, as the research object. A high-resolution δ18O sequence spanning the past century was reconstructed through a combination of high-precision 230Th dating and stalagmite laminae counting. This study reveals that the δ18O values of stalagmite TK22-1 exhibited a range of -6.03‰ to -7.29‰, with a mean value of -6.57‰. The positive shifts of δ18O (peaks) correspond well with recorded major drought events in the Sichuan-Chongqing region, such as the 2006 summer drought and the 1960 drought disaster. Correlation analyses show that δ18O variations exhibit a significant positive correlation with annual mean temperature but significant negative correlations with both annual mean humidity and the number of annual precipitation days. Although negatively correlated with total annual precipitation, this relationship does not reach statistical significance. Notably, the δ18O record closely corresponds to local drought events, indicating that regional hydrological conditions-such as temperature, the number of precipitation days, and humidity-are the dominant factors influencing stalagmite δ18O values.The nearly 100-year stalagmite δ18O time series shows distinct phases: δ18O remained consistently negative from 1900 to 1910, shifted to positive between 1910 and 1960, briefly decreased from 1960 to 1970, and have exhibited a consistently positive trend since 1970. Principal component analysis demonstrates that the positive δ18O trend in stalagmites from the Chinese monsoon region is spatially widespread, with a significant weakening observed after 1980. The observed weakening of the Asian Summer Monsoon (ASM) results from a combination of natural variability, such as 11-year solar cycles and Pacific Decadal Oscillation phase shifts, and anthropogenic forcing including greenhouse gases and aerosols. The primary driving mechanisms including ENSO regime transitions, weakening of Atlantic Meridional Overturning Circulation (AMOC) and Pacific Walker Circulation (PWC), and aerosol effects.This trend is significantly associated with global rise in temperature, an increased frequency of extreme ENSO events, and the weakening of both the AMOC and the PWC. Wavelet analysis identifies significant ENSO-related periodicities (2 years to 7 years) in the δ18O record. Between 1960 and 2000, the ENSO system progressively shifted toward El Niño-like states, with Central Pacific (CP) El Niño events suppressing monsoon intensity. The weakening of AMOC reduces land-sea thermal gradients, while the weakening of PWC alters zonal sea surface temperature gradients; together, these changes diminish monsoon dynamics.

     

  • loading
  • [1]
    IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability[M]. Cambridge University Press, 2022.
    [2]
    Wang Y, Cheng H, Edwards R L, Broecker W S, Dykoski C A, Li X M. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years[J]. Nature, 2008, 451(7182): 1090-1093. doi: 10.1038/nature06692
    [3]
    Held I M, Soden B J. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19(21): 5686-5699. doi: 10.1175/JCLI3990.1
    [4]
    An Z S, Kutzbach J E, Prell W L, Porter S C, Xiao J. Evolution of Asian monsoons and phased uplift of the Himalaya−Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66. doi: 10.1038/35075035
    [5]
    Yancheva G, Nowaczyk N R, Mingram J, Dulski P, Negendank J F W, Sinninghe Damsté J S. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7123): 74-77. doi: 10.1038/nature05431
    [6]
    成永生, 肖想, 余子俊,罗忠行,曾德兴,廖先平,李望月,陈鑫,刘舟, 吴非易,张俊. 湘西吉首岩溶区土壤有机质富集特征及其关键影响因素 [J/OL]. 中国岩溶, 2025, 1-19[2025-02-28]. https://www.cnki.net/.

    CHENG Yongsheng, XIAO Xiang, YU Zijun, LUO Zhongxing, ZENG Dexing, LI Wangyue, CHEN Xin, LIU Zhou,WU Feiyi, ZHANG Jun. Enrichment characteristics and key influencing factors of soil organic matter in the karst region of Jishou, Xiangxi, Western Hunan[J/OL]. Carsologica Sinica, 2025, 1-19 [2025-02-28]. https://www.cnki.net/.
    [7]
    朱德根, 杨慧, 赵虎,史邵亮,吴秀芹, Mitija Prelovšek,Nataša Ravbar.广西岩溶区石漠化演变及其对土地利用变化的响应[J/OL]. 中国岩溶, 2025, 1-22.[2024-12-02]. https://www.cnki.net/.

    ZHU Degen, YANG Hui, ZHAO Hu,WU Xiuqin, Mitija Prelovšek, Nataša Ravbar. Evolution of rocky desertification and its response to land use changes in the karst region of Guangxi, Southwest China[J/OL]. Carsologica Sinica, 2025, 1-22[2024-12-02]. https://www.cnki.net/.
    [8]
    江峰, 吉勤克补子, 曹建文,王若帆,赵良杰. 黔中岩溶区地下水水化学来源特征及其影响因素[J]. 中国岩溶, 2024, 43(4): 889-899.

    JIANG Feng, JIQIN Kebuzi, CAO Jianwen, WANG Ruofan, ZHAO Liangjie. Hydrochemical sources and controlling factors of groundwater in the karst region of central Guizhou, Southwest China[J]. Carsologica Sinica, 2024, 43(4): 889-899.
    [9]
    Tan M, Liu T S, Hou J Z, Cai Y J, Shen C C. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature[J]. Geophysical Research Letters, 2003, 30(12): 1617.
    [10]
    Yang X L, Yang H, Wang B Y, Cheng H, Edwards R L, Zhang M. Early-Holocene monsoon instability and climatic optimum recorded by Chinese stalagmites[J]. The Holocene, 2019, a,29(4): 1-9.
    [11]
    Yang X L, Liu J B, Liang F Y, Cheng H, Edwards R L, Zhang M. Holocene stalagmite δ18O records in the East Asian monsoon region and their correlation with those in the Indian monsoon region[J]. The Holocene, 2014(12):1657-1664.
    [12]
    Maher B A. Holocene variability of the East Asian summer monsoon from Chinese cave records: A re-assessment[J]. The Holocene, 2008, 18(6): 861-866. doi: 10.1177/0959683608095569
    [13]
    Maher B A, Thompson R. Oxygen isotopes from Chinese caves: records not of monsoon rainfall but of circulation regime[J]. Journal of Quaternary Science, 2012, 27(6): 615-624. doi: 10.1002/jqs.2553
    [14]
    殷建军, 唐伟. 桂林茅茅头大岩近50年来石笋 δ18O 记录与局地气候大尺度环流关系探讨[J]. 地质学报, 2016, 90(8): 2035-2042. doi: 10.3969/j.issn.0001-5717.2016.08.030

    YIN Jianjun, TANG Wei. Relationship between stalagmite δ18O records from Maomaotou Cave, Guilin over the past 50 years and large-scale atmospheric circulation-local climate interactions[J]. Acta Geologica Sinica, 2016, 90(8): 2035-2042. doi: 10.3969/j.issn.0001-5717.2016.08.030
    [15]
    Li X, Cheng H, Tan L, Edwards R L, Shen C C, Zhang M. The East Asian summer monsoon variability over the last 145 years inferred from the Shihua Cave record [J]. North China, 2017, Sci Rep7: 7078.
    [16]
    Zhang H, Cheng H, Spötl C, Edwards R L, Shen C C, Wang Y. A 200-year annually laminated stalagmite record of precipitation seasonality in southeastern China and its linkages to ENSO and PDO [J]. Sci Rep 8, 2018: 12344.
    [17]
    TAN L C, SHEN C C, Löwemark L, CHENG H, Edwards R L, Wang Y. Rainfall variations in central Indo-Pacific over the past 2, 700 yr[J]. Proceeding of the National Academy Sciences, 2019, 116: 17201-17206. doi: 10.1073/pnas.1903167116
    [18]
    李廷勇. 伪雨量效应—— 一个同位素气候学问题的讨论[J]. 第四纪研究, 2018, 38(6): 1545-1548. doi: 10.11928/j.issn.1001-7410.2018.06.20

    LI Tingyong. Pseudo-amount effect: revisiting a critical question in isotope climatology[J]. Quaternary Sciences, 2018, 38(6): 1545-1548. doi: 10.11928/j.issn.1001-7410.2018.06.20
    [19]
    Nan S, Tan M, Zhao P, Liu X, Cai Y. Evaluation of the ability of the Chinese stalagmite δ18O to record the variation in atmospheric circulation during the second half of the 20th century[J]. Clim Past, 2014, 10(3): 975-985. doi: 10.5194/cp-10-975-2014
    [20]
    Tan M, Liu X, Cai Y, Zhao P. Circulation effect: response of precipitation δ18O to the ENSO cycle in monsoon regions of China[J]. Climate dynamics, 2014, 42(3): 1067-1077.
    [21]
    谭明. 环流效应: 中国季风区石笋氧同位素短尺度变化的气候意义: 古气候记录与现代气候研究的一次对话[J]. 第四纪研究, 2009,29(5):851-862.

    TAN Ming. Circulation Effect: climatic significance of short-term variability in stalagmite δ18O from the Chinese monsoon region — bridging paleoclimate records and modern climate dynamics[J]. Quaternary Sciences, 2009,29(5):851-862.
    [22]
    Ruan J Y, Zhang H Y, Cai Z Y, Liu, X M, Huang C Y. Regional controls on daily to interannual variations of precipitation isotope ratios in Southeast China: Implications for paleomonsoon reconstruction[J]. Earth and Planetary Science Letters, 2019, 527: 115794. doi: 10.1016/j.jpgl.2019.115794
    [23]
    WANG Y J, CHENG H, Edwards R L,AN Z, WU J Y, SHEN C C, Dorale J A . A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618
    [24]
    Zhao K, Wang Y J. , Edwards R L, Cheng H, Shen C C, & Zhang M. A high-resolved record of the Asian Summer Monsoon from Dongge Cave, China for the past 1200 years[J]. Quaternary Science Reviews, 2015, 122: 250-257. doi: 10.1016/j.quascirev.2015.05.030
    [25]
    Zhao J, Cheng H, Yang Y, Edwards R L, Shen C C, Wang Y. Reconstructing the western boundary variability of the Western Pacific Subtropical High over the past 200 years via Chinese cave oxygen isotope records[J]. Quaternary Science Reviews, 2019, 52: 3741-3757.
    [26]
    Tan L, An Z, Huh C A, Cheng H, Edwards R L, Shen C C. Cyclic precipitation variation on the western Loess Plateau of China during the past four centuries[J]. Scientific Reports, 2014, 4: 6381. doi: 10.1038/srep06381
    [27]
    Shen C Z, Wu C C, Cheng H, Edwards R L, Hsieh Y T, Gallet S, Chang C C, Li T Y, Lam D D, Kano A. High-precision and high-resolution 230Th dating for coral and speleothem carbonates by MC-ICP-MS with SEM protocols[J]. Geochimica et Cosmochimica Acta, 2012, 99: 71-86. doi: 10.1016/j.gca.2012.09.018
    [28]
    殷建军, 李红春, 沈川洲, 李廷勇, 林玉石, 覃嘉铭, 唐伟, 王华, 杨会. 年轻石笋平均沉积速率的确定: 多方法探讨[J]. 地质学报, 2015, 89(10): 1884-1891. doi: 10.3969/j.issn.0001-5717.2015.10.015

    YIN Jianjun, LI Hongchun, SHEN Chuanzhou, LI Tingyong, LIN Yushi, QIN Jiaming, TANG Wei, WANG Hua, YANG Hui. Determining average growth rates of young stalagmites: A multi-method approach[J]. Acta Geologica Sinica, 2015, 89(10): 1884-1891. doi: 10.3969/j.issn.0001-5717.2015.10.015
    [29]
    张德二, 刘传志. 《中国近五百年旱涝分布图集》续补 (1980-1992 年)[J]. 气象, 1993(11): 41-45. doi: 10.7519/j.issn.1000-0526.1993.11.009

    ZHANG De'er, LIU Chuanzhi. Continuation and supplementation of "Atlas of Drought and Flood Distribution in China in the Past Five Hundred Years" (1980-1992)[J]. Meteorology, 1993(11): 41-45. doi: 10.7519/j.issn.1000-0526.1993.11.009
    [30]
    张德二, 李小泉, 梁有叶. 《中国近五百年旱涝分布图集》的再续补 (1993-2000 年)[J]. 应用气象学报, 2003, 14(3): 397-388.

    ZHANG De'er, LI Xiaoquan, LIANG Youye. Further continuation and supplementation of "Atlas of Drought and Flood Distribution in China in the Past Five Hundred Years" (1993-2000)[J]. Journal of Applied Meteorological Science, 2003, 14(3): 397-388.
    [31]
    中央气象局气象科学研究院. 中国近五百年旱涝分布图集[M]. 北京: 地图出版社, 1981: 321-332.

    Meteorological Science Research Institute of the Central Meteorological Bureau. Atlas of drought and flood distribution in China in the past five hundred years[M]. Beijing: Cartographic Publishing House, 1981: 321-332.
    [32]
    董西瑀, 程海, Kathayat G, Edwards R L, Sinha A, Wang Y. 石笋记录的印度季风Heinrich 2 事件结束过程[J]. 第四纪研究, 2019, 39(4): 878-893. doi: 10.11928/j.issn.1001-7410.2019.04.08

    DONG Xiyu, CHENG Hai, Kathayat G, Edwards R L, Sinha A, Wang Y. The end process of the Heinrich 2 event of the Indian monsoon recorded by stalagmites[J]. Quaternary Sciences, 2019, 39(4): 878-893. doi: 10.11928/j.issn.1001-7410.2019.04.08
    [33]
    钱维宏, 朱亚芬, 汤帅奇. 重建千年东亚夏季风干湿分布型指数[J]. 科学通报, 2011, 56(25): 2075-2082. doi: 10.1360/csb2011-56-25-2075

    QIAN Weihong, ZHU Yafen, TANG Shuaiqi. Reconstruction of the aridity-humidity distribution index of the east Asian summer monsoon over the past thousand years[J]. Chinese Science Bulletin, 2011, 56(25): 2075-2082. doi: 10.1360/csb2011-56-25-2075
    [34]
    Zhang H W, Ait-Brahim Y, Li L L, Cheng H, Edwards R L, Shen C C. The Asian Summer Monsoon: Teleconnections and Forcing Mechanisms—A Review from Chinese Speleothem δ18O Records[J]. Quaternary, 2019, 2(3): 26. doi: 10.3390/quat2030026
    [35]
    Li H, Dai A, Zhou T, Trenberth K E, Jones P D. Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950−2000[J]. Climate Dynamics, 2010, 34: 501-514. doi: 10.1007/s00382-008-0482-7
    [36]
    Chen X M, Jiang X Y, Wang X G, Zhao J Y, Sun Z, Li Y D, Ye Z M, Cai J R, Fu X, Xu Y Z, Yang Y. New insights into potential effects of solar activity on the oxygen isotope composition of modern speleothems: Observations from Jiguan Cave, central China II[J]. Journal of Hydrology, 2023, 625(B): 130114. [ISSN 0022-1694]
    [37]
    Fairchild I J, Baker A. Speleothem Science: From Process to Past Environments [M]. Wiley-Blackwell, 2012.
    [38]
    Liu M, Xu X, Wang D. Karst catchments exhibited higher degradation stress from climate change than the non-karst catchments in southwest China: An ecohydrological perspective[J]. Journal of Hydrology, 2016, 535: 173-180. doi: 10.1016/j.jhydrol.2016.01.033
    [39]
    张日萍, 杨勋林, 张瑞. 重庆金佛洞石笋灰度气候环境意义及全新世千年尺度事件[J]. 第四纪研究, 2020, 40(4): 936-944. doi: 10.11928/j.issn.1001-7410.2020.04.09

    ZHANG Riping, YANG Xunlin, ZHANG Rui. Climatic and environmental significance of stalagmite gray-scale and Holocene millennial-scale events in Jinfo Cave, Chongqing[J]. Quaternary Sciences, 2020, 40(4): 936-944. doi: 10.11928/j.issn.1001-7410.2020.04.09
    [40]
    张瑞, 杨勋林, 刘秀明, 殷建军, 刘睿恺, 王宝艳. 渝东南近 100 年石笋灰度变化及气候环境意义[J]. 生态学报, 2019, 39(16): 6098-6106.

    ZHANG Rui, YANG Xunlin, LIU Xiuming, YIN Jianjun, LIU Ruikai, WANG Baoyan. Changes in stalagmite gray-scale in southeastern Chongqing over the past 100 years and their climatic and environmental significance[J]. Acta Ecologica Sinica, 2019, 39(16): 6098-6106.
    [41]
    郭其蕴, 蔡静宁, 邵雪梅, 沙万英. 1873-2000 年东亚夏季风变化的研究[J]. 大气科学, 2004, 28(2): 206-215. doi: 10.3878/j.issn.1006-9895.2004.02.04

    GUO Qiyun, CAI Jingning, SHAO Xuemei, SHA Wanying. A study on the variation of the east Asian summer monsoon during 1873-2000[J]. Chinese Journal of Atmospheric Sciences, 2004, 28(2): 206-215. doi: 10.3878/j.issn.1006-9895.2004.02.04
    [42]
    Zhao J, Cheng H, Cao J. Orchestrated decline of Asian summer monsoon and Atlantic meridional overturning circulation in global warming period[J]. The Innovation Geoscience, 2023, 1(1): 100011.
    [43]
    Falster G, Konecky B, Coats S. Forced changes in the Pacific Walker circulation over the past millennium[J]. Nature, 2023, 622: 93-100. doi: 10.1038/s41586-023-06447-0
    [44]
    Pahnke K, Zahn R, Elderfield H, Schulz M. 340, 000-Year Centennial-Scale Marine Record of Southern Hemisphere Climatic Oscillation[J]. Science, 2003, 301(5635): 948-952. doi: 10.1126/science.1084451
    [45]
    Xu G B, Liu X H, Zhang Q. Century scale temperature variability and onset of industrial era warming in the Eastern Tibetan Plateau [J]. Climate Dynamics, 2019, 53 (7-8).
    [46]
    Santer B, Bonfils C, Painter J. Volcanic contribution to decadal changes in tropospheric temperature[J]. Nature Geoscience, 2014, 7: 185-189. doi: 10.1038/ngeo2098
    [47]
    Santoso A. Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections[J]. Nature, 2013, 504: 126-130. doi: 10.1038/nature12683
    [48]
    王宁练, 姚檀栋, Thompson L G, Davis M E. 近 500 年来喜马拉雅山达索普冰芯中尘埃含量变化与西、南亚及北非干旱化趋势[J]. 第四纪研究, 2012, 32 (1): 53-58.

    WANG Ninglian, YAO Tandong, Thompson, L G, Davis M E. Changes in dust content in the Dasuopu ice core on the Himalayas over the past 500 years and the aridification trends in West Asia, South Asia and North Africa [J]. Quaternary Sciences, 2012, 32 (1): 53-58.
    [49]
    Schmidt G A, Jungclaus J H, Ammann C M. Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.0)[J]. Geoscientific Model Development, 2011, 4(3): 1549-1586.
    [50]
    Zhang J, Liang M Q. Asian-Australian monsoon evolution over the last millennium linked to ENSO in composite stalagmite δ18O records [J]. Quaternary Science, 2022, 107420.
    [51]
    胡春迪. 全球变化背景下厄尔尼诺的模态变异及其与东亚和北极夏季气候异常的遥相关关系[D]. 南京: 南京大学, 2016.

    HU Chundi. Modal variations of El Niño under the background of global change and its teleconnection with abnormal summer climates in east Asia and the Arctic [D]. Nanjing: Nanjing University, 2016.
    [52]
    Freund M B, Henley B J, Karoly D J. Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries[J]. Nature Geoscience, 2019, 12: 450-455. doi: 10.1038/s41561-019-0353-3
    [53]
    Bellomo K, Meccia V L, D’Agostino, R. Impacts of a weakened AMOC on precipitation over the Euro-Atlantic region in the EC-Earth3 climate model[J]. Climate Dynamics, 2023, 61: 3397-3416. doi: 10.1007/s00382-023-06754-2
    [54]
    Jackson L C, Biastoch A, Buckley M W. The evolution of the North Atlantic Meridional Overturning Circulation since 1980[J]. Nature Review Earth & Environment, 2022, 3: 241-254. doi: 10.1038/s43017-022-00263-2
    [55]
    Zhang R, Delworth T L. Simulated Tropical Response to a Substantial Weakening of the Atlantic Thermohaline Circulation[J]. Journal of Climate, 2005, 18: 1853-1860. doi: 10.1175/JCLI3460.1
    [56]
    Cheng H, Li H Y, Sha L J. Milankovitch theory and monsoon[J]. The Innovation, 2022, 3: 100338.
    [57]
    Cheng H, Zhang H, Cai Y. Orbital-scale Asian summer monsoon variations: Paradox and exploration[J]. Science China Earth Sciences, 2021, 64: 529-544. doi: 10.1007/s11430-020-9720-y
    [58]
    Cheng H, Xu Y, Dong X. Onset and termination of Heinrich Stadial 4 and the underlying climate dynamics[J]. Communicaions Earth & Environment, 2021, 2: 230. doi: 10.1038/s43247-021-00304-6
    [59]
    Gabrielli P, Wegner A, Sierra-Hernández, M. Early atmospheric contamination on the top of the Himalayas since the onset of the European Industrial Revolution[J]. Proceedings of the National Academy of Sciences, 2020, 117(8): 201910485.
    [60]
    Kang J M, Shaw T A, Sun L. Anthropogenic Aerosols Have Significantly Weakened the Regional Summertime Circulation in the Northern Hemisphere During the Satellite Era [J]. AGU, 2024,5(6):e2024AV001318.
    [61]
    Kaspi Y, Schneider T. "The Role of Stationary Eddies in Shaping Midlatitude Storm Tracks. " Journal of the Atmospheric Sciences, 2013, 70 (7): 2007-2021.
    [62]
    Liu Y, Cai W J, Sun C F, Song H M, Cobb K. M. Anthropogenic Aerosols Cause Recent Pronounced Weakening of Asian Summer Monsoon Relative to Last Four Centuries[J]. Geophysical Research Letters, 2019, 10(6):527-542.
    [63]
    谭明. 近千年气候格局的环流背景: ENSO 态的不确定性分析与再重建[J]. 中国科学: 地球科学, 2016, 46(5): 657-673. doi: 10.1360/N072015-00078

    TAN Ming. Circulation background of the climate pattern in the past millennium: Uncertainty analysis and reconstruction of the ENSO state[J]. Scientia Sinica (Terrae), 2016, 46(5): 657-673. doi: 10.1360/N072015-00078
    [64]
    CAI W J, Borlace S, Lengaigne M,. Increasing frequency of extreme El Niño events due to greenhouse warming[J]. Nature Climate Change, 2014, 4: 111-116. doi: 10.1038/nclimate2100
    [65]
    Tokinaga H, Xie S P, Deser C. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming[J]. Nature, 2012, 491: 439-443. doi: 10.1038/nature11576
    [66]
    Nobre P, Veiga S F, Giarolla E. AMOC decline and recovery in a warmer climate[J]. Scientic Reports, 2023, 13: 15928. doi: 10.1038/s41598-023-43143-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return