• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
JIANG Bing, SUN Zengbing, ZHANG Deming, WANG Jian, LIU Yang. Pollution characteristics and sources of soil heavy metals in the carbonate rock region of central Shandong[J]. CARSOLOGICA SINICA, 2025, 44(4): 802-814. doi: 10.11932/karst20250410
Citation: JIANG Bing, SUN Zengbing, ZHANG Deming, WANG Jian, LIU Yang. Pollution characteristics and sources of soil heavy metals in the carbonate rock region of central Shandong[J]. CARSOLOGICA SINICA, 2025, 44(4): 802-814. doi: 10.11932/karst20250410

Pollution characteristics and sources of soil heavy metals in the carbonate rock region of central Shandong

doi: 10.11932/karst20250410
  • Received Date: 2022-07-20
  • Accepted Date: 2024-10-15
  • Rev Recd Date: 2024-07-28
  • Available Online: 2025-11-07
  • Soil heavy metals in carbonate rock regions often exhibit natural high-background characteristics due to secondary enrichment during pedogenesis, posing potential risks to soil health, agricultural product safety, and ecological sustainability. Understanding the pollution patterns and sources of heavy metals in such high-background zones is critical for formulating targeted environmental protection strategies and safeguarding human health. This study focused on the carbonate rock region of central Shandong, a typical northern Chinese karst region dominated by Cambrian-Ordovician limestone and dolomite as parent rocks. A comprehensive investigation was conducted by collecting and analyzing samples of rock, surface soil, vertical soil profile, and atmospheric dustfall. Multiple analytical methods, including Enrichment Factor (EF) analysis, Principal Component Analysis (PCA), annual heavy metal increment simulation from dustfall, and Pearson correlation analysis, were employed to explore the pollution characteristics, sources, and influencing factors of soil heavy metals. Carbonate rock regions are globally significant for their unique pedogenic processes, where heavy metals undergo secondary enrichment due to intense chemical weathering and leaching of carbonate minerals. This natural enrichment, combined with potential anthropogenic inputs (e.g., atmospheric dustfall), complicates the identification of heavy metal sources and their ecological impacts. Previous studies have primarily focused on single-medium (soil-only or rock-soil) analyses, lacking systematic multi-medium investigations. This study aimed to bridge this gap by integrating data on rock, soil, and atmospheric dustfall to comprehensively characterize the behavior of heavy metals in carbonate rock regions. The study area, located at the junction of the mountainous area in central Shandong and the northern Shandong plain, experiences a semi-humid continental monsoon climate characterized by distinct seasonal precipitation. Parent rocks are primarily carbonate (limestone and dolomite), with soil development dominated by chemical weathering. Soil samples were collected from natural woodlands and wilderness grasslands with minimal human disturbance. Rock samples were collected at the outcrop of bedrock. Atmospheric dustfall samples were collected over a one-year period of dry deposition. All samples were processed and analyzed in a certified laboratory, with heavy metal concentrations measured by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), X-ray Fluorescence (XRF), and Atomic Fluorescence Spectrometry (AFS). Additionally, physicochemical properties, including pH, cation exchange capacity, and organic matter, were determined. The results show as follows: (1) The contents of soil heavy metals (Cu, Pb, Zn, Cr, Ni, As, Cd, and Hg) are 2.76 to 6.82 times higher than those in parent rocks. The contents of As, Cr, and Ni in atmospheric dustfall is lower than those in soil (enrichment coefficient between 0.47 and 0.65), while the contents of Cu, Pb, Zn, Hg, and Cd are higher (enrichment coefficient between 1.17 and 8.67), with Cd being the most significantly enriched. (2) The average pollution degree of soil heavy metals, ranked by EF values, is: Hg > Cd > Ni > Cu > As > Zn > Pb > Cr. Most metals exhibit low pollution levels (EF< 2), except for minor Hg cases (EF> 5). Cr and Ni show negligible anthropogenic influence (all EF< 2), while Cd and Hg have relatively higher EF values, indicating potential external inputs. (3) Atmospheric dustfall contribute to the accumulation of soil heavy metals, with annual growth rates calculated as follows: Cd (0.55%), Hg (0.20%), Zn (0.16%), and Pb (0.09%). Cd and Hg, with the highest growth rates, were more significantly affected by dust deposition. (4) Soil Organic Matter (SOM) is strongly correlated with Cd and Hg (P<0.01), showing similar vertical distribution patterns (surface accumulation). Cation Exchange Capacity (CEC) is significantly correlated with Cu, Pb, Zn, Cr, Ni, and As (P<0.01), with stable vertical variations. These results indicate that Cd and Hg are primarily controlled by SOM and superimposed by dustfall inputs, while Cu, Pb, Zn, Cr, Ni, and As are mainly derived from parent rock weathering. This study provides a systematic multi-media (rock-soil-dustfall) analysis of heavy metal behavior in carbonate rock regions, emphasizing the combined effects of natural parent materials and anthropogenic dustfall. By integrating enrichment factor analysis, PCA, dustfall increment simulation, and correlation analysis, we identified the sources and controlling factors of soil heavy metals. These findings provide scientific support for strategies of evidence-based soil pollution control in similar carbonate rock regions, particularly prioritizing the management of Cd and Hg based on their higher accumulation rates and anthropogenic contributions.

     

  • loading
  • [1]
    Beckford H O, Chu H S, Song C S, Chang C, Ji H B. Geochemical characteristics and behaviour of elements during weathering and pedogenesis over karst area in Yunnan-Guizhou Plateau, southwestern China[J]. Environmental Earth Sciences, 2021, 80(2): 1-21.
    [2]
    Zhao F J, Ma Y B, Zhu Y G, Tang Z, Mcgrath S P. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759.
    [3]
    Rezapour S, Atashpaz B, Moghaddam S S, Kalavrouziotis I K, Damalas C A. Cadmium accumulation, translocation factor, and health risk potential in a wastewater-irrigated soil-wheat (Triticum aestivum L. ) system[J]. Chemosphere, 2019, 231: 579-587. doi: 10.1016/j.chemosphere.2019.05.095
    [4]
    马宏宏, 彭敏, 刘飞, 郭飞, 唐世琪, 刘秀金, 周亚龙, 杨柯, 李括, 杨峥, 成杭新. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1): 449-459.

    MA Honghong, PENG Min, LIU Fei, GUO Fei, TANG Shiqi, LIU Xiujin, ZHOU Yalong, YANG Ke, LI Kuo, YANG Zheng, CHENG Hangxin. Bioavailability, translocation, and accumulation characteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environmental Science, 2020, 41(1): 449-459.
    [5]
    冯志刚, 刘威, 张兰英, 李佩珊, 马强. 贫Cd碳酸盐岩发育土壤Cd的富集与超常富集现象: 以贵州岩溶区为例[J]. 地质通报, 2022, 41(4): 533-544.

    FENG Zhigang, LIU Wei, ZHANG Lanying, LI Peishan, MA Qiang. Enrichment and supernormal enrichment phenomenon of Cd in soils developed on Cd-poor carbonate rocks: A case study of karst areas in Guizhou, China[J]. Geological Bulletin of China, 2022, 41(4): 533-544.
    [6]
    王秋艳, 文雪峰, 魏晓, 刘鸿雁. 碳酸盐岩风化和成土过程的重金属迁移富集机理初探及环境风险评价[J]. 地球与环境, 2022, 50(1): 119-130.

    WANG Qiuyan, WEN Xuefeng, WEI Xiao, LIU Hongyan. Heavy metal migration and enrichment mechanism and the environmental risks during the weathering and soil formation of carbonate rocks[J]. Earth and Environment, 2022, 50(1): 119-130.
    [7]
    张广映, 吴琳娜, 欧阳坤长, 吴攀. 都柳江上游沿岸喀斯特地区土壤重金属污染特征及风险评价[J]. 中国岩溶, 2021, 40(3): 495-503.

    ZHANG Guangying, WU Linna, OUYANG Kunchang, WU Pan. Pollution characteristics and risk assessment of heavy metals in soils along the upper reaches of the Duliu river[J]. Carsologica Sinica, 2021, 40(3): 495-503.
    [8]
    赵西强, 庞绪贵, 王增辉, 战金成. 利用原子荧光光谱—电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征[J]. 岩矿测试, 2015, 34(2): 245-251.

    ZHAO Xiqiang, PANG Xugui, WANG Zenghui, ZHAN Jincheng. Study on the characteristics of heavy metal contents and annual fluxes of atmospheric dry and wet deposition in Jinan City using AFS and ICP-MS[J]. Rock and Mineral Analysis, 2015, 34(2): 245-251.
    [9]
    王佳, 刘斌, 肖柏林, 李余杰, 张田硕, 吴璜, 张玉婷. 重庆主城区空气降尘中重金属的特点及其在表层土壤中的累积量研究[J]. 土壤, 2019, 51(6): 1160-1167.

    WANG Jia, LIU Bin, XIAO Bolin, LI Yujie, ZHANG Tianshuo, WU Huang, ZHANG Yuting. Characteristics of heavy metals in atmospheric deposition and its impact on their accumulation in soil of Chongqing[J]. Soils, 2019, 51(6): 1160-1167.
    [10]
    董騄睿, 胡文友, 黄标, 刘刚, 瞿明凯, 邝荣禧. 基于正定矩阵因子分析模型的城郊农田土壤重金属源解析[J]. 中国环境科学, 2015, 35(7): 2103-2111.

    DONG Lurui, HU Wenyou, HUANG Biao, LIU Gang, QU Mingkai, KUANG Rongxi. Source appointment of heavy metals in suburban farmland soils based on positive matrix factorization[J]. China Environmental Science, 2015, 35(7): 2103-2111.
    [11]
    比拉力·依明, 阿不都艾尼·阿不里, 师庆东, 刘素红, 尼加提·卡斯木, 李浩. 基于PMF模型的准东煤矿周围土壤重金属污染及来源解析[J]. 农业工程学报, 2019, 35(9): 185-192.

    BILAL Imin, ABDUGHENI Abliz, SHI Qingdong, LIU Suhong, NIJAT Kasim, LI Hao. Pollution and source identification of heavy metals in surrounding soils of Eastern Junggar Coalfield based on PMF model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 185-192.
    [12]
    余飞, 罗恺, 王佳彬, 李瑜, 周皎, 王锐, 余亚伟, 张云逸. 重庆岩溶地质高背景区土壤-农作物系统重金属累积特征及影响因素[J]. 中国岩溶, 2023, 42(1): 71-83.

    YU Fei, LUO Kai, WANG Jiabin, LI Yu, ZHOU Jiao, WANG Rui, YU Yawei, ZHANG Yunyi. Characteristics and influencing factors of heavy metal accumulation in soil-crop system in the karst area with high geological background of Chongqing[J]. Carsologica Sinica, 2023, 42(1): 71-83.
    [13]
    DZ/T 0289—2015. 区域生态地球化学评价规范[S]. 2015.
    [14]
    DZ/T 0295—2016. 土地质量地球化学评价规范[S]. 2016.
    [15]
    Chester R, Stoner J H. Pb in particulates from the lower atmosphere of the eastern Atlantic[J]. Nature, 1973, 244(5419): 27-28.
    [16]
    Woitke P, Wellmitz J, Helm D, Kube P, Lepom P, Litheraty P. Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube[J]. Chemosphere, 2003, 51(8): 633-642. doi: 10.1016/S0045-6535(03)00217-0
    [17]
    庞绪贵, 代杰瑞, 董健, 任天龙, 喻超, 刘华峰, 王存龙, 王红晋, 王增辉, 赵西强, 曾宪东, 任文凯. 山东省土壤地球化学基准值[J]. 山东国土资源, 2017, 33(11): 43-47.

    PANG Xugui, DAI Jierui, DONG Jian, REN Tianlong, YU Chao, LIU Huafeng, WANG Cunlong, WANG Hongjin, WANG Zenghui, ZHAO Xiqiang, ZENG Xiandong, REN Wenkai. Soil geochemical reference value in Shandong Province[J]. Shangdong Land and Resources, 2017, 33(11): 43-47.
    [18]
    柴华, 何念鹏. 中国土壤容重特征及其对区域碳贮量估算的意义[J]. 生态学报, 2016, 36(13): 3903-3910.

    CHAI Hua, HE Nianpeng. Evaluation of soil bulk density in Chinese terrestrial ecosystems for determination of soil carbon storage on a regional scale[J]. Acta Ecologica Sinica, 2016, 36(13): 3903-3910.
    [19]
    鄢明才, 迟清华, 顾铁新, 王春书. 中国东部地壳元素丰度与岩石平均化学组成研究[J]. 物探与化探, 1997, 21(6): 451-459.

    YAN Mingcai, CHI Qinghua, GU Tiexin, WANG Chunshu. Chemical compositions of continental crust and rocks in eastern China[J]. Geophysical and Geochemical Exploration, 1997, 21(6): 451-459.
    [20]
    庞绪贵, 代杰瑞, 胡雪平, 宋志勇, 喻超, 陈磊, 张华平, 刘华峰, 王红晋, 王增辉, 赵西强, 曾宪东, 任文凯. 山东省土壤地球化学背景值[J]. 山东国土资源, 2018, 34(1): 39-43.

    PANG Xugui, DAI Jierui, HU Xueping, SONG Zhiyong, YU Chao, CHEN Lei, ZHANG Huaping, LIU Huafeng, WANG Hongjin, WANG Zenghui, ZHAO Xiqiang, ZENG Xiandong, REN Wenkai. Background values of soil geochemistry in Shandong Province[J]. Shangdong Land and Resources, 2018, 34(1): 39-43.
    [21]
    张春荣, 吴正龙, 田红, 高宗军. 青岛市区大气降尘重金属的特征和来源分析[J]. 环境化学, 2014, 33(7): 1187-1193. doi: 10.7524/j.issn.0254-6108.2014.07.013

    ZHANG Chunrong, WU Zhenglong, TIAN Hong, GAO Zongjun. Characteristics and sources Analysis of heavy metals in atmospheric dust of Qingdao[J]. Environmental Chemistry, 2014, 33(7): 1187-1193. doi: 10.7524/j.issn.0254-6108.2014.07.013
    [22]
    代杰瑞, 祝德成, 庞绪贵, 王学. 济宁市近地表大气降尘地球化学特征及污染来源解析[J]. 中国环境科学, 2014, 34(1): 40-48.

    DAI Jierui, ZHU Decheng, PANG Xugui, WANG Xue. Geochemical characteristics and pollution sources identification of the near-surface atmosphere dust-fall in Jining City[J]. China Environmental Science, 2014, 34(1): 40-48.
    [23]
    Liu X M, Zhang L, Zhang L. Concentration, risk assessment, and source identification of heavy metals in surface sediments in Yinghai: A shellfish cultivation zone in Jiaozhou Bay, China[J]. Marine Pollution Bulletin, 2017, 121(1-2): 216-221. doi: 10.1016/j.marpolbul.2017.05.063
    [24]
    罗成科, 毕江涛, 肖国举, 张峰举. 宁东基地不同工业园区周边土壤重金属污染特征及其评价[J]. 生态环境学报, 2017, 26(7): 1221-1227.

    LUO Chengke, BI Jiangtao, XIAO Guoju, ZHANG Fengju. Pollution characteristics and assessment of heavy metals in soil of different industry zones of Ningdong Base in Ningxia, China[J]. Ecology and Environment Sciences, 2017, 26(7): 1221-1227.
    [25]
    吴红璇, 史常青, 张艳, 赵廷宁, 胡平, 刘韵, 陈童. 乌海市煤矿区及周边春季降尘污染特征及来源分析[J]. 环境科学, 2020, 41(3): 1167-1175.

    WU Hongxuan, SHI Changqing, ZHANG Yan, ZHAO Tingning, HU Ping, LIU Yun, CHEN Tong. Characteristics and source apportionment of dustfall pollution in the coal mine area and surrounding areas of Wuhai City in spring[J]. Environmental Science, 2020, 41(3): 1167-1175.
    [26]
    Zhang P Y, Qin C Z, Hong X H, Kang G H, Qin M Z, Yang D, Pang B, Li Y Y, He J J, Dick R P. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China[J]. Science of the Total Environment, 2018, 633: 1136-1147. doi: 10.1016/j.scitotenv.2018.03.228
    [27]
    姜冰, 王松涛, 孙增兵, 张海瑞, 刘阳, 刘倩. 基于不同参比值的土壤重金属潜在生态风险评价[J]. 科学技术与工程, 2022, 22(7): 2964-2971. doi: 10.3969/j.issn.1671-1815.2022.07.055

    JIANG Bing, WANG Songtao, SUN Zengbing, ZHANG Hairui, LIU Yang, LIU Qian. Potential ecological risk assessment of soil heavy metals based on different reference ratios[J]. Science Technology and Engineering, 2022, 22(7): 2964-2971. doi: 10.3969/j.issn.1671-1815.2022.07.055
    [28]
    Huang S S, Tu J, Liu H Y, Hua M, Liao Q L, Feng J S, Weng Z H, Huang G M. Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China[J]. Atmospheric Environment, 2009, 43(36): 5781-5790. doi: 10.1016/j.atmosenv.2009.07.055
    [29]
    丛源, 陈岳龙, 杨忠芳, 侯青叶, 王洪翠. 北京平原区元素的大气干湿沉降通量[J]. 地质通报, 2008, 27(2): 257-264. doi: 10.3969/j.issn.1671-2552.2008.02.014

    CONG Yuan, CHEN Yuelong, YANG Zhongfang, HOU Qingye, WANG Hongcui. Dry and wet atmospheric deposition fluxes of elements in the Plain area of Beijing Municipality, China[J]. Geological Bulletin of China, 2008, 27(2): 257-264. doi: 10.3969/j.issn.1671-2552.2008.02.014
    [30]
    刘久臣, 魏吉鑫, 张明, 马逸麟, 汤奇峰. 江西赣州市石城县天然富锌土地资源特征与开发利用[J]. 地质通报, 2021, 40(2): 442-450.

    LIU Jiuchen, WEI Jixin, ZHANG Ming, MA Yilin, TANG Qifeng. Characteristics and effective utilization of natural zinc-enriched land resources in Shicheng County of Ganzhou City, Jiangxi Province[J]. Geological Bulletin of China, 2021, 40(2): 442-450.
    [31]
    蔡祖聪, 马毅杰. 土壤有机质与土壤阳离子交换量的关系[J]. 土壤学进展, 1988, 16(3): 10-15.
    [32]
    Fan T T, Wang Y J, Li C B, He J Z, Gao J, Zhou D M, Friedman S P, Sparks D L. Effect of organic matter on sorption of Zn on soil: elucidation by Wien effect measurements and EXAFS spectroscopy.[J]. Environmental Science & Technology, 2016, 50(6): 2931-2937.
    [33]
    刘冠男, 刘新会. 土壤胶体对重金属运移行为的影响[J]. 环境化学, 2013, 32(7): 1308-1317.

    LIU Guannan, LIU Xinhui. A review on the impact of soil colloids on heavy metal transport[J]. Environmental Chemistry, 2013, 32(7): 1308-1317.
    [34]
    覃建勋, 付伟, 郑国东, 邓宾, 吴天生, 赵辛金, 卢炳科, 覃勇新. 广西岩溶区表层土壤硒元素分布特征与影响因素探究: 以武鸣县为例[J]. 土壤学报, 2020, 57(5): 1299-1310.

    QIN Jianxun, FU Wei, ZHENG Guodong, DENG Bin, WU Tiansheng, ZHAO Xinjin, LU Bingke, QIN Yongxin. Selenium distribution in surface soil layer of karst area of Guangxi and its affecting factors: A case study of Wuming County[J]. Acta Pedologica Sinica, 2020, 57(5): 1299-1310.
    [35]
    马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望[J]. 地球科学进展, 2018, 33(11): 1130-1141.

    MA Qianhong, ZHANG Keli. Progresses and prospects of the research on soil erosion in karst area of southwest China[J]. Advances in Earth Science, 2018, 33(11): 1130-1141.
    [36]
    ZHU Lijun, QI Liang. Chemical forms of heavy metals in carbonate-derived laterite and enrichment of its iron oxide minerals[J]. Chinese Journal of Geochemistry, 1997, 16(3): 263-270. doi: 10.1007/BF02870910
    [37]
    NI Shanqin, JU Yiwen, HOU Quanlin, WANG Shijie, LIU Qing, WU Yudong, XIAO Lingling. Enrichment of heavy metal elements and their adsorption on iron oxides during carbonate rock weathering process[J]. Progress in Natural Science, 2009, 19(9): 1133-1139. doi: 10.1016/j.pnsc.2009.01.008
    [38]
    江厚龙, 张均, 李钠钾, 徐宸, 杨超, 王红锋, 耿莉娜, 陈益银. 烟草试验站土壤养分空间变异性研究[J]. 西南农业学报, 2014, 27(6): 2617-2623.

    JIANG Houlong, ZHANG Jun, LI Najia, XU Chen, YANG Chao, WANG Hongfeng, GENG Lina, CHEN Yiyin. Spatial Variability of Soil Nutrients at Tobacco Experiment Station in Chongqing[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(6): 2617-2623.
    [39]
    Xiao R, Wang S, Li R H, Wang J J, Zhang Z Q. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China[J]. Ecotoxicology and Environmental Safety, 2017, 141: 17-24. doi: 10.1016/j.ecoenv.2017.03.002
    [40]
    李甘雨, 崔邢涛. 唐山市大气降尘重金属污染特征与健康风险评价[J]. 环境工程, 2023, 41(12): 278-287.

    LI Ganyu, CUI Xingtao. Characteristics of heavy metal elements pollution and health risk assessment of atmospheric dust-fall in Tangshan[J]. Environmental Engineering, 2023, 41(12): 278-287.
    [41]
    秦旭芝, 罗志祥, 季文兵, 梁鹏, 苏荣, 李方, 刘旭, 尹娟. 桂西北地质高背景区有色金属冶炼对周边土壤重金属污染与生态风险评价[J]. 生态学杂志, 2021, 40(8): 2324-2333.

    QIN Xuzhi, LUO Zhixiang, JI Wenbing, LIANG Peng, SU Rong, LI Fang, LIU Xu, YIN Juan. Pollution and ecological risk assessment of heavy metals in surrounding soil by nonferrous metal smelting with high geological background in Northwest Guangxi[J]. Chinese Journal of Ecology, 2021, 40(8): 2324-2333.
    [42]
    冯乾伟, 王兵, 马先杰, 蒋宗宏, 陈淼. 黔西北典型铅锌矿区土壤重金属污染特征及其来源分析[J]. 矿物岩石地球化学通报, 2020, 39(4): 863-870.

    FENG Qianwei, WANG Bing, MA Xianjie, JIANG Zonghong, CHEN Miao. Pollution characteristics and source analysis of heavy metals in soils of typical lead-zinc mining areas in northwest Guizhou, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(4): 863-870.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return