• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
WANG Jinlong, ZHENG Guodong, QIN Jianxun, WANG Lei, LI Jie, OUYANG Xindong, GU Wenbo, HUANG Xiaoxia, QIN Yanyin. Analysis of heavy metal pollution sources in farmland soil surrounding weathered manganese ore mining areas in the Guangxi karst region based on APCS-MLR model[J]. CARSOLOGICA SINICA, 2025, 44(4): 790-801. doi: 10.11932/karst20250409
Citation: WANG Jinlong, ZHENG Guodong, QIN Jianxun, WANG Lei, LI Jie, OUYANG Xindong, GU Wenbo, HUANG Xiaoxia, QIN Yanyin. Analysis of heavy metal pollution sources in farmland soil surrounding weathered manganese ore mining areas in the Guangxi karst region based on APCS-MLR model[J]. CARSOLOGICA SINICA, 2025, 44(4): 790-801. doi: 10.11932/karst20250409

Analysis of heavy metal pollution sources in farmland soil surrounding weathered manganese ore mining areas in the Guangxi karst region based on APCS-MLR model

doi: 10.11932/karst20250409
  • Received Date: 2024-12-09
  • Accepted Date: 2025-04-23
  • Rev Recd Date: 2025-03-27
  • Available Online: 2025-11-07
  • Guangxi boasts an abundant supply of manganese ore resources, with its annual output constituting approximately 30% of the national total. The distribution is extensive, encompassing manganese ore deposits in all 14 prefecture-level cities. Nevertheless, while endowed with rich manganese ore resources, the ecological and environmental issues resulting from manganese mining have grown increasingly severe, particularly the presence of excessive heavy metals in the surrounding farmland soil of manganese mining areas. According to relevant statistics, the area of farmland influenced by manganese mining within Guangxi amounts to approximately 13.32% of the total farmland area in the region. The contents of heavy metal elements, such as Cd and As, in the soil significantly exceed the average levels of soil in Guangxi. Relevant research indicates that in most edible parts of crops grown in farmland surrounding manganese mining areas, five types of heavy metals have surpassed the national food safety thresholds. These crops, containing excessive heavy metals, will ultimately accumulate in the human body through the food chain, causing irreversible harm to human health with long-term consumption. However, to date, no research has been so far conducted on heavy metal pollution in farmland soil associated with manganese mining in Guangxi. Hence, to investigate the ecological risks posed by manganese mining to the surrounding farmland, the soil from farmland adjacent to the weathered manganese mining area in a typical karst region of Guangxi was selected as the research subject. Soil samples were collected from the 0 to 20 cm soil layer of farmland surrounding the manganese mining area, and the contents of eight heavy metal elements were analyzed. The potential pollution index method and the geoaccumulation index method were employed to assess the ecological risk of the farmland soil in the study area. Principal Component Analysis (PCA) and the Absolute Factor Score-Multiple Linear Regression model (ACPS-MLR) were utilized to qualitatively and quantitatively analyze the sources of heavy metals in the soil, while the Positive Matrix Factorization (PMF) model was applied to verify the results. The findings reveal that the potential pollution risk of the farmland soil in the study area is moderate (RI = 222.28), among which the pollution indices of single indicators Cd ( Ei= 90.05) and Hg ( Ei= 89.6) reach the medium to severe level. The degree of geoaccumulation pollution follows the order: Cd > Hg > Zn > Pb > Ni > Cr > Cu > As. The evaluation results disclose that there exists a certain degree of pollution in the soil of the study area, mainly manifested by heavy metal elements such as Cd, Hg, As, Pb and Zn. The PCA results suggest that the farmland soil in the study area is primarily influenced by two pollution sources, which are likely human mining and emission sources and natural sources, contributing 61.8% and 26.2%, respectively. The quantitative analysis results of the ACPS-MLR demonstrate that Cd, Cr, Hg, Mn and Ni are mainly affected by human mining activities, contributing 97.22%, 81.79%, 92.47%, 97.28% and 82.81%, respectively. In contrast, As, Pb, and Zn are mainly influenced by natural sources, contributing 60.71%, 88.97% and 72.14%, respectively. Cu is mainly affected by the superposition of human mining activities and natural sources, contributing 47.75% and 52.25%, respectively. The verification results of the PMF indicate that the two models exhibit a high degree of similarity in identifying pollution sources. However, due to the significant differences in their mechanisms, discrepancies arise in the analysis of the contribution rates of pollution sources. Nevertheless, the two models together form a robust method verification system. A comprehensive consideration of both models can provide a more scientifically sound theoretical basis for pollution source tracing. Based on this study, the findings can serve as a foundation for the remediation of heavy metals in farmland soil and for the prevention and control of ecological risks in the study area.

     

  • loading
  • [1]
    唐文杰. 广西三锰矿区土壤污染与优势植物重金属富集研究[D]. 桂林: 广西师范大学, 2008.

    TANG Wenjie. Heavy metal contamination of soils and bioaccumulation by dominant plants in three manganese minelands in Guangxi[D]. Guilin: Guangxi Normal University, 2008.
    [2]
    王新帅, 林华, 俞果, 蒋萍萍, 刘杰. 桂北典型锰矿区周边土壤重金属污染状况及主要植物富集特征[J]. 广西植物, 2022, 42(7): 1160-1169.

    WANG Xinshuai, LIN Hua, YU Guo, JIANG Pingping, LIU Jie. Heavy metal pollution assessment of a typical manganese mine tailing and heavy metal enrichment characteristics of dominant. plant species in North Guangxi. [J] Guihaia, 2022, 42(7): 1160-1169.
    [3]
    任军, 石遥, 刘方, 田蓉, 刘兴. 贵州锰矿废渣堆场重金属污染风险评价及草本植物重金属吸收特征[J]. 草业学报, 2021, 30(8): 86-97.

    REN Jun, SHI Yao , LIU Fang, TIAN Rong, LIU Xing, An assessment of heavy metal absorption patterns in herbaceous plants and pollution risks in manganese mining ares in Guizhou Province[J]. Acta Pratacul Turae Sinica, 2021, 30(8): 86-97.
    [4]
    陈家乐, 相满城, 唐林茜, 张春华, 葛滢. 运积型地质高背景稻田土壤重金属污染和人体健康风险评价[J]. 生态学杂志, 2021, 40(8): 2334-2340.

    CHEN Jiale, XIANG Mancheng, TANG Linxi, ZHANG Chunhua, GE Ying. Assessing heavy metal pollution and human health risk of paddy soil with high geological background of transportation and deposition.[J]. Chinese Journal of Ecology, 2021, 40(8): 2334-2340.
    [5]
    余飞, 罗恺, 王佳彬, 李瑜, 周皎, 王锐, 余亚伟, 张云逸. 重庆岩溶地质高背景区土壤: 农作物系统重金属累积特征及影响因素[J]. 中国岩溶, 2023, 42(1): 71-83. doi: 10.11932/karst20230106

    YU Fei, LUO Kai, WANG Jiabin, LI Yu, ZHOU Jiao, WANG Rui, YU Yawei, ZHANG Yunyi. Characteristics and influencing factors of heavy metal accumulation in soil-crop system in the karst area with high geological background of Chongqing[J]. Garsologica Sinica, 2023, 42(1): 71-83. doi: 10.11932/karst20230106
    [6]
    陈航, 王颖, 王澍. 铜山矿区周边农田土壤重金属来源解析及污染评价[J]. 环境科学, 2022, 43(5): 2719-2731.

    CHEN Hang, WANG Ying, WANG Shu. Source analysis and pollution assessment of heavy metals in farmland soil around Tongshan mining area[J]. Environmental Science, 2022, 43(5): 2719-2731.
    [7]
    余高, 陈芬, 张晓东, 孙约兵. 锰矿区周边农田土壤重金属污染特征、来源解析及风险评价[J]. 环境科学, 2023, 44(8): 4416-4428.

    YU Gao, CHEN Fen, ZHANG Xiaodong, SUN Yuebing. Pollution characteristics, source analysis, and risk assessment of heavy metals in the surrounding farmlands of mangganese mining area[J]. Environmental Science, 2023, 44(8): 4416-4428.
    [8]
    江攀和, 梁劲松, 魏泽权, 杨旭, 马其丽, 陈磊. 黔北某锰矿区土壤重金属污染特征及潜在生态风险评价[J]. 贵州地质, 2023, 40(1): 61-71. doi: 10.3969/j.issn.1000-5943.2023.01.009

    JIANG Panhe, LIANG Jinsong, WEI Zequan, YANG Xu, MA Qili, CHEN Lei. Characteristics of soil heavy metal pollution and potential ecological risk assessment in a manganese mining area of North Guizhou[J]. Guizhou Geology, 2023, 40(1): 61-71. doi: 10.3969/j.issn.1000-5943.2023.01.009
    [9]
    吕玉娟, 王秋月, 孙雪梅, 张志伟, 张毅敏, 高月香. 浙江省某尾矿库周边农田土壤重金属污染特征及来源解析[J]. 环境工程技术学报, 2023, 13(4): 1464-1475. doi: 10.12153/j.issn.1674-991X.20221193

    LYU Yujuan, WANG Qiuyue, SUN Xuemei, ZHANG Zhiwei, ZHANG Yimin, GAO Yuexiang. Pollution characteristics and source identification of heavy metals in farmland soils around a tailing pond in Zhejiang Province[J]. Journal of Environmental Engineering Technology, 2023, 13(4): 1464-1475. doi: 10.12153/j.issn.1674-991X.20221193
    [10]
    刘红, 张君, 于桑, 张立, 陈昊, 鲁晓威, 乔月. 基于优化DRASTIC模型的地下水污染风险评价研究: 以山东省辖南水北调区域为例[J]. 中国岩溶, 2024, 43(3): 513-526. doi: 10.11932/karst20240302

    LIU Hong, ZHANG Jun, YU Sang, ZHANG Li, CHEN Hao, LU Xiaowei, QIAO Yue. Evaluation of groundwater pollution risk based on the optimized drastic model: A case study of the areas along the route of South-to-North Water Diversion Project in Shandong Province[J]. Garsologica Sinica, 2024, 43(3): 513-526. doi: 10.11932/karst20240302
    [11]
    Chen L, Zhou S, Wu S. Combining emission inventory and isotope ratio analyses for quantitative source apportionment of heavy metals in agricultural soil[J]. Chemosphere, 2018, 204: 140-147. doi: 10.1016/j.chemosphere.2018.04.002
    [12]
    Huang Y, Deng M, Wu S. A modified receptor model for source apportionment of heavy metal pollution in soil[J]. Journals of Hazardous Materials, 2018, 354: 161-169. doi: 10.1016/j.jhazmat.2018.05.006
    [13]
    董天浩, 潘淑芳, 张仁杰, 姜立恒, 郭焱, 纪雄辉, 谢运河. 基于APCS-MLR和PMF模型的石煤矿区及周边区域农田土壤重金属污染来源解析[J]. 环境科学, 2025, 46(5): 3209-3219.

    DONG Tianhao, PAN Shufang, ZHANG Renjie, JIANG Liheng, GUO Yan, JI Xiongwei, XIE Yunhe. Source apportionment of heavy metal pollution in farmland soil of a stone coal mining area and its surrounding area based on APCS-MLR and PMF models[J]. Environmental Science, 2025, 46(5): 3209-3219.
    [14]
    Yao C, Shen Z J, Wang Y M. Tracing and quantifying the source of heavy metals in agricultural soils in a coal gangues stacking area: insights from isotope fingerprints and receptor models[J]. Environment Science, 2023, 863: 160882.
    [15]
    张永江, 李璐, 马双, 邓茂, 李希希, 吴丽君, 周洵平. 典型锰矿区周边农田土壤重金属污染风险评价及其来源分析[J]. 有色金属(冶炼部分), 2023(10): 138-148.

    ZHANG Yongjiang, LI Lu, MA Shuang, DENG Mao, LI Xixi, WU Lijun, ZHOU Xunping. Pollution evaluationand source analysisof heavy metals in farmland soilsaroundthe typical manganese mining area[J]. Nonferrous Metals(Extractive Metallurgy), 2023(10): 138-148.
    [16]
    Lars, Hakanson. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001.
    [17]
    徐争启, 倪师军, 庹先国, 张成江. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008(2): 112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030

    XU Zhengqi, NI Shijun, TUO Xianguo, ZHANG Chengjiang. Calculation of heavy metals toxicity coefficient in the evaluation of potential ecological risk[J]. Index Environmental Science & Technology, 2008(2): 112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030
    [18]
    中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.

    China National Environmental Monitoring Centre. values of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.
    [19]
    刘洋, 刘明庆, 王磊, 尹爱经, 黄忠林, 姚丹丹, 代威, 王宁, 王辉. 云南某废弃硅厂周边农田土壤重金属污染评价[J]. 农业环境科学学报, 2022, 41(4): 785-793. doi: 10.11654/jaes.2021-0839

    LIU Yang, LIU Mingqing, WANG Lei, YIN Aijing, HUANG Zhonglin, YAO Dandan, DAI Wei, WANG Ning, WANG Hui. Evaluation of heavy metal pollution in farmland soil around an abandoned silicon plant in Yunnan[J]. Journal of Agro-Environment Science, 2022, 41(4): 785-793. doi: 10.11654/jaes.2021-0839
    [20]
    沈智杰, 李杰芹, 李彩霞, 廖泽源, 梅楠, 罗程钟, 王定勇, 张成. 基于APCS-MLR和PMF模型的赤泥堆场周边耕地土壤重金属污染源解析[J]. 环境科学, 2024, 45(2): 1058-1068.

    SHEN Zhijie, LI Jieqin, LI Caixia, LIAO Zeyuan, MEI Nan, LUO Chenzhong, WANG Dingyong, ZHANG Cheng. pollution source apportionment of heavy metals in cultivated soil around a red mud yard based on APCS-MLR and PMF models[J]. Environmental Science, 2024, 45(2): 1058-1068.
    [21]
    俞月凤, 曾成城, 宋同清, 彭晚霞, 何铁光. 桂西北喀斯特区石灰土矿物质的空间变异[J]. 中国岩溶, 2023, 42(3): 509-516, 527. doi: 10.11932/karst20230303

    YU Yuefeng, ZENG Chengcheng. SONG Tongqing, PENG Wangxia, HE Tieguang. Spatial variation of limestone soil minerals in a karst area of northwestern Guangxi[J]. Carsologica Sinica, 2023, 42(3): 509-516, 527. doi: 10.11932/karst20230303
    [22]
    杨振宇, 廖超林, 邹炎, 谢伍晋, 陈晓威, 张驭飞. 湘东北典型河源区土壤重金属分布特征、来源解析及潜在生态风险评价[J]. 环境科学, 2023, 44(9): 5288-5298.

    YANG Zhenyu, LIAO Chaolin, ZOU Yan, XIE Wujin. Distribution characteristics, source amalysis and potential ecologica risk assessment of soil heavy metals in typical river source areas of northeastern Hunan Province[J]. Environmental Science, 2023, 44(9): 5288-5298.
    [23]
    于旦洋, 王颜红, 丁茯, 陈欣, 王镜然. 近十年来我国土壤重金属污染源解析方法比较[J]. 土壤通报, 2021, 52(4): 1000-1008.

    YU Danyang, WANG Yanhong, DING Fu, CHEN Xin, WANG Jingran. Comparison of analysis methods of soil heavy metal pollution sources in China in last ten years[J]. Chinese Journal of Soil Science, 2021, 52(4): 1000-1008.
    [24]
    曾晓丽, 李惠民, 樊艳春, 梅子奇, 易芳, 刘鑫珍, 杨秀琼, 赵刚, 胡春华. 江西某石煤矿区周边农田土壤重金属污染评价及来源解析[J]. 环境化学, 2025, 44(6): 1-13. doi: 10.7524/j.issn.0254-6108.2024012503

    ZENG Xiaoli, LI Huimin, FAN Yanchun, MEI Ziqi YI Fang, LIU Xinzhen, YANG Xiuxiong, ZHAO Gang, HU Chunhua. Evaluation and source analysis of heavy metal pollution in farmland soils surrounding a certain stone coal mining area in Jiangxi Province[J]. Environmental Chemistry, 2025, 44(6): 1-13. doi: 10.7524/j.issn.0254-6108.2024012503
    [25]
    paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203
    [26]
    鄢明才, 顾铁新, 迟清华, 王春书. 中国土壤化学元素丰度与表生地球化学特征[J]. 物探与化探, 1997, 21(3): 161-167.

    YAN Mingcai, GU Tiexin, CHI Qinghua, WANG Chunshu. Abundance of chemical elements of soils in China and supergenesis geochemistry characteristics[J]. Geophysucal & Geochemical Exploration, 1997, 21(3): 161-167.
    [27]
    洪涛, 孔祥胜, 岳祥飞. 滇东南峰丛洼地土壤重金属含量、来源及潜在生态风险评价[J]. 环境科学, 2019(10): 4620-4627.

    HONG Tao, KONG Xiangsheng, YUE Xiangfei. Concentration characteristics, source analysis, and potential ecological risk assessment of heavy metals in a peak-cluster depression area, southeast of Yunnan Province[J]. Environmental Science, 2019(10): 4620-4627.
    [28]
    权良贤. 矿区土壤重金属污染特征评估模型的构建与评价[J]. 山西冶金, 2023, 46(8): 130-132.

    QUAN Liangxian. Construction and evaluation of an evaluation model for heavy metal pollution characteristics in mining soil[J]. Shanxi Metallurgy, 2023, 46(8): 130-132.
    [29]
    黄世坤, 宋雄. 我国锰矿类型、控矿因素及成因探讨[J]. 地质与勘探, 1985, 21(10): 1-7.

    HUANG Shikun, SONG Xiong. Discussion on the types, controlling factors and causes of manganese ore in China[J]. Geology and Prospecting, 1985, 21(10): 1-7.
    [30]
    陆凤. 贵州典型锰矿区锰渣重金属污染特征及环境效应[D]. 贵阳: 贵州大学, 2008.

    LU Feng. Characteristics of heavy metal pollution and environmental effects from manganese residues in typical manganese mining area in Guizhou abstract[D]. Guiyang: Guizhou University, 2008.
    [31]
    张永江, 田川, 邓茂, 王祥炳, 刘蓉. 典型锰矿开采冶炼区域重金属分布及潜在风险评价[J]. 环境影响评价, 2017, 39(4): 66-70, 84.

    ZHANG Yongjiang, TIAN Chuan, DENG Mao, WANG Xiangbing, LIU Rong. Distribution and potential ecological risk assessment of heavy metal in certain typical manganese ore area[J]. Environmental Impact Assessment, 2017, 39(4): 66-70, 84.
    [32]
    郑杰炳, 周川, 王力, 曾德耀, 高建梅. 城口县典型锰矿区土壤重金属潜在生态风险评价[J]. 南方农业, 2020, 14(28): 16-19.

    ZHENG Jiebing, ZHOU Chuan, WANG Li, ZENG Deyao, GAO Jianmei. Potential ecological risk assessment of soil heavy metals in typical manganese ore areas of Chengkou county[J]. South China Agriculture, 2020, 14(28): 16-19.
    [33]
    马杰, 刘萍, 刘今朝, 郭春会, 张秀, 王玲灵. 重庆市煤矸山周边农用地土壤重金属污染评价和定量溯源解析[J]. 环境科学, 2022, 43(12): 5698-5709.

    MA Jie, LIU Ping, LIU Jinzhao, GUO Chunhui, ZHANG Xiu, WANG Lingling. Pollution evaluation and quantitative traceability analysis of heavy metals in farmland soils around the gangue heap of a coal mine in Chongqing[J]. Environmental Science, 2022, 43(12): 5698-5709.
    [34]
    Anaman R, Peng C, Jiang Z C. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF[J]. Science of the Total Environment, 2022, 823: 153759.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return