• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
QIN Zhengfeng, XU Qi, JIA Min, BI Xueli, YANG Xiangpeng. Mapping and characteristic analysis of karst areas along the Belt and Road[J]. CARSOLOGICA SINICA, 2025, 44(3): 645-656, 668. doi: 10.11932/karst20250311
Citation: QIN Zhengfeng, XU Qi, JIA Min, BI Xueli, YANG Xiangpeng. Mapping and characteristic analysis of karst areas along the Belt and Road[J]. CARSOLOGICA SINICA, 2025, 44(3): 645-656, 668. doi: 10.11932/karst20250311

Mapping and characteristic analysis of karst areas along the Belt and Road

doi: 10.11932/karst20250311
  • Received Date: 2024-02-15
  • Accepted Date: 2025-04-02
  • Rev Recd Date: 2025-03-25
  • Available Online: 2025-09-03
  • The region along the Belt and Road is a critical global hub for energy production and supply, containing 55% of the world’s oil reserves and 76% of its natural gas reserves. Carbonate rock oil and gas reservoirs hold an extremely important position in global hydrocarbon resources. Statistics show that carbonate reservoirs account for approximately 70% of the world’s total oil and gas resources, 50% of proven recoverable reserves, and 60% of global production. By the end of 2013, there were 53 UNESCO World Heritage Sites featuring karst landscapes worldwide, including 42 designated as World Natural Heritage Sites. The stunning karst landscapes and unique cave formations have become major tourist attractions, while the abundant karst water resources and carbonate rock oil and gas reserves support human survival and development. The karst regions along the Belt and Road encompass over 50% of the global karst areas, which coincide with intensive human activities. In the context of global change, these regions face prominent environmental challenges, including karst drought, rocky desertification, water pollution, and severe geological hazards such as collapses and depression waterlogging, posing substantial threats to regional eco-environmental security.Supported by a project of the China Geological Survey, this study employed MODIS Reprojection Tool (MRT) and the Environment for Visualizing Images (ENVI) software to conduct remote sensing interpretation of collected datasets, including annual precipitation, mean temperature, evaporation, elevation data, and satellite imagery. A specialized map of the karst geological environment along the Belt and Road was compiled, which laid a foundation for further classification of key types of karst belt along the route and serving the International Karst Science Program. By integrating remote sensing images, geological maps, literature, and other data, and combining with field verification, this study has compared the karst characteristics of plateaus, large slopes, plains, and coastal areas within their geological and climatic contexts. The main conclusions are as follows.(1) Karst distribution areas along the Belt and Road span about 12.3 million km2, representing over half of the global karst coverage. Among the countries along the Belt and Road, China, Russia, and Kazakhstan have the largest karst areas, ranking as the top three in terms of karst coverage.(2) The characteristics of karst distribution under different elevations, temperatures, rainfall levels, and evaporation rates along the Belt and Road are quantitatively analyzed. Karst areas located between 0 m and 1,000 m in elevation account for 74% of the total karst area, whereas those above 3,500 m represent only 8%. Karst areas with surface temperatures above 9 ℃ comprise 65.3%, while those below 9 ℃ account for 34.7%. Regarding annual rainfall, karst areas receiving 0 mm to 210 mm constitute 31% of the total area, those receiving 210 mm to 540 mm account for 32%, 540 mm to 840 mm cover 18%, and areas with annual rainfall exceeding 840 mm represent 19%. Additionally, karst areas with evaporation rates below 205 mm account for 51.4% of the total.(3) A comparative analysis of karst development conditions and controlling factors in Ethiopia, Croatia, Turkey, Iran, Thailand, and South China reveals that the lithology and tectonics of soluble rocks serve as intrinsic drivers of karst development, establishing the fundamental framework for karst processes. Meanwhile, climate acts as an extrinsic driving force, with both factors jointly shaping the development of karst landforms. Taking the karst in South China as an example, this study analyzes the influence of tectonic uplift on the differentiation of karst landforms. Distinct vertical hydrological profiles and erosion-dissolution base levels have been formed during different geological periods. To adapt to changes in these base levels, karst geomorphological zones have been developed at varying elevations. Moreover, the significant disparities in elevation also induce variations in climate, hydrology, and tectonic conditions, which in turn cause geomorphological differentiation in karst landforms. Meanwhile, China’s Qinghai-Xizang Plateau on the first terrain ladder is characterized by high altitude, low temperatures, and scarce rainfall. The development of modern karst is limited in this region, exhibiting only micro-karst formations on rock surfaces. In contrast, Southwest China (Yunnan, Sichuan, and Chongqing), located on the second terrain ladder, experiences abundant rainfall and steep slopes. This area undergoes intense fluvial downcutting, forming canyons and peak-cluster valleys. Meanwhile, Guangxi (China), Thailand, and other Indochina Peninsula plains lie on the third terrain ladder. These areas are characterized by a hot, humid climate and low-elevation terrains near sea level, exhibiting vigorous surface and subsurface karstification and developing classic karst landforms such as peak-cluster valleys, peak-forest plains, and isolated-peak plains.

     

  • loading
  • [1]
    王瑞江, 陈其慎, 聂凤军, 梅燕雄. 关于“一带一路”地学合作若干问题的思考 [J]. 地球学报, 2016, 37(4): 433-40.

    WANG Ruijiang, CHEN Qishen, NIE Fengjun, MEI Yanxiong. Consideration of some problems concerning the earth sciences cooperation in “One Belt and One Road” Construction[J]. Acta Geoscientica Sinica, 2016, 37(4) : 433-440.
    [2]
    刘大文. “一带一路”地质调查工作刍议[J]. 中国地质, 2015, 42(4): 819-827. doi: 10.3969/j.issn.1000-3657.2015.04.002

    LIU Dawen. A tentative discussion on the "Belt and Road"geological survey[J]. Geology In China, 2015, 42(4): 819-827. doi: 10.3969/j.issn.1000-3657.2015.04.002
    [3]
    陈喜峰, 施俊法, 陈秀法, 叶锦华. “一带一路”沿线重要固体矿产资源分布特征与潜力分析[J]. 中国矿业, 2017, 26(11): 32-41.

    CHEN Xifeng, SHI Junfa, CHEN Xiufa, YE Jinhua. Distribution characteristic and potential analysis of important solid mineral resources in"Belt and Road"area[J]. China Mining Magazine, 2017, 26(11): 32-41.
    [4]
    李阳, 康志江, 薛兆杰, 郑松青. 中国碳酸盐岩油气藏开发理论与实践 [J]. 石油勘探与开发, 2018, 45(4): 669-678.

    LI Yang , KANG Zhijiang, XUE Zhaojie, ZHENG Songqing. Theories and practices of carbonate reservoirs development in China[J]. Petroleum Exploration and Development, 2018, 45(4): 669-678.
    [5]
    杨冬冬, 邱海军, 胡胜, 邹强, 朱亚茹. “一带一路”地区地质灾害时空分布特征及防治对策[J]. 科技导报, 2020, 38(16): 45-52.

    YANG Dongdong, QIU Haijun, HU Sheng, ZHU Yaru. Temporal and spatial distributions of geo-hazards along the "Belt and Road" and policy recommendations for disaster prevention[J]. Science & Technology Review, 2020, 38(16): 45-52.
    [6]
    文正红. 中国南方喀斯特生态过程及其世界遗产价值研究 [D]. 贵阳: 贵州师范大学, 2015.

    WEN Zhenghong. Global geomorphic comparison and world heritage values of South China Karst [D]. Guiyang : Guizhou Normal University, 2015.
    [7]
    郝林钢. “一带一路”分区自然地理特征及水资源分析 [D]. 郑州: 郑州大学, 2019.

    HAO Lingang. Physiographic characteristics and water resources analysis of the regions among the "Belt and Road" [D]. Zhengzhou: Zhengzhou University, 2019.
    [8]
    曹建华. 岩溶: 全球气候变化的地质过程之旅[J]. 国土资源科普与文化, 2015(4): 4-9.
    [9]
    ALI YAMAç E G, EZGI TOK, KORAY TÖRK. Cave and Karst Systems of the World [M].Berlin, Germany: Springer Nature, 2021.
    [10]
    GARASIC M. The dinaric karst system in Croatia [J]. The Dinaric Karst System of Croatia, 2021: 25-45.
    [11]
    GILLI E. Karst Areas of Turkey.Caves and Karst of Turkey(Volume 2)[M].Berlin, Germany: Springer Nature, 2022.
    [12]
    吴福元, 万博, 赵亮, 肖文交, 朱日祥. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627-1674. doi: 10.18654/1000-0569/2020.06.01

    WU Fuyuan, WAN Bo, ZHAO Liang, XIAO Wenjiao, ZHU Rixiang. Tethyan geodynamics[J]. Acta Petrologica Sinica, 2020, 36(6): 1627-1674. doi: 10.18654/1000-0569/2020.06.01
    [13]
    李忠海, 崔峰源, 杨舒婷, 钟辛易. 特提斯演化的关键动力学过程与驱动力 [J]. 中国科学(地球科学), 2023, 53(12): 2701-2722.

    LI Zhonghai, CUI Fengyuan, YANG Shuting, ZHONG Xinyi. Key geodynamic processes and driving forces of Tethyan evolution. Science China Earth Sciences, 2023, 53(12): 2701−2722.
    [14]
    刘元晴, 周乐, 王新峰, 吕琳, 路小慧, 于开宁, 张伟峰. 北方岩溶区断裂带水文地质性质及结构模型[J]. 中国岩溶, 2022, 41(6): 975-985. doi: 10.11932/karst20220609

    LIU Yuanqing, ZHOU Le, WANG Xinfeng, LV Lin, LU Xiaohui, YU Kaining, ZHANG Weifeng. Hydrogeological structure model of the fault zone in the karst area of north China[J]. Carsologica Sinica, 2022, 41(6): 975-985. doi: 10.11932/karst20220609
    [15]
    陈亮晶, 姚腾飞, 周鑫. 湖南道县铁锰矿区岩溶发育影响因素分析[J]. 中国岩溶, 2012, 31(3): 240-247. doi: 10.3969/j.issn.1001-4810.2012.03.003

    CHEN Liangjing, YAO Tengfei, ZHOU Xin. Analysis on impact factors of karst development in Dao county iron and manganese mining area of Hunan[J]. Carsologica Sinica, 2012, 31(3): 240-247. doi: 10.3969/j.issn.1001-4810.2012.03.003
    [16]
    黄盛财, 成建梅, 巴净慧, 李仲夏, 徐文杰, 王研. 基于滇中典型紧窄单斜岩溶水系统特征的隧洞涌水条件分析[J]. 中国岩溶, 2023, 42(3): 528-537. doi: 10.11932/karst20230305

    HUANG Shengcai, CHENG Jianmei, BA Jinghui, LI Zhongxia, XU Wenjie, WANG Yan. Analysis of tunnel inflow conditions based on the characteristics of typical tight-narrow monoclinic karst water system in the central Yunnan Province, China[J]. Carsologica Sinica, 2023, 42(3): 528-537. doi: 10.11932/karst20230305
    [17]
    吴亚楠, 杨云涛, 焦玉国, 刘志涛, 王延岭, 翟代廷, 周绍智, 魏凯, 程凤. 山东省岩溶塌陷发育特征及诱因分析[J]. 中国岩溶, 2023, 42(1): 128-138,148. doi: 10.11932/karst2023y007

    WU Ya’nan, YANG Yuntao, JIAO Yuguo, LIU Zhitao, WANG Yanling, ZHAI Daiting, ZHOU Shaozhi, WEI Kai, CHENG Feng. Analysis on development characteristics and inducement of karst collapse in Shandong Province[J]. Carsologica Sinica, 2023, 42(1): 128-138,148. doi: 10.11932/karst2023y007
    [18]
    冯亚伟. 山东省岩溶塌陷分布规律及成因机制[J]. 中国岩溶, 2021, 40(2): 205-214. doi: 10.11932/karst2021y01

    FENG Yawei. Distribution and genesis of karst collapse in Shandong Province[J]. Carsologica Sinica, 2021, 40(2): 205-214. doi: 10.11932/karst2021y01
    [19]
    和祥, 董学兰, 杨超, 刘鹏, 薛博强. 云南鹤庆县北衙金矿岩溶发育及富水特征[J]. 中国岩溶, 2023, 42(6): 1173-1182. doi: 10.11932/karst2023y025

    HE Xiang, DONG Xuelan, YANG Chao, LIU Peng, XUE Boqiang. Characteristics of karst development and water abundance of the Beiya Gold Deposit in Heqing county of Yunnan[J]. Carsologica Sinica, 2023, 42(6): 1173-1182. doi: 10.11932/karst2023y025
    [20]
    杨杨, 赵良杰, 夏日元, 王莹. 珠江流域岩溶地下河分布特征与影响因素研究[J]. 中国岩溶, 2022, 41(4): 562-576. doi: 10.11932/karst20220515

    YANG Yang, ZHAO Liangjie, XIA Riyuan, WANG Ying. Distribution and influencing factors of karst underground rivers in the Pearl River Basin[J]. Carsologica Sinica, 2022, 41(4): 562-576. doi: 10.11932/karst20220515
    [21]
    蒙彦, 郑小战, 雷明堂, 李卓骏, 贾龙, 潘宗源. 珠三角地区岩溶分布特征及发育规律 [J]. 中国岩溶, 2019, 38(5): 746-751.

    MENG Yan, ZHENG Xiaozhan, LEI Mingtang, LI Zhuojun, JIA Long, PAN Zongyuan. Karst distribution and development in the Pearl River Delta[J]. Carsologica Sinica, 2019, 38(5): 746-751.
    [22]
    陈宏峰, 张发旺, 何愿, 夏日元, 邹胜章, 苏春田, 罗书文. 地质与地貌条件对岩溶系统的控制与指示[J]. 水文地质工程地质, 2016, 43(5): 42-47.

    CHEN Hongfeng, ZHANG Fawang, HE Yuan, XIA Riyuan, ZOU Shengzhang, SU Chuntian, LUO Shuwen. Geological and geomorphologic settings acting as the controlling factors and indicators for karst systems.[J]. Hydrogeology & Engineering Geology, 2016, 43(5): 42-47.
    [23]
    陈明, 王运生, 曹水合, 杨栓成. 旺苍地区岩溶地貌形态特征及成因机理研究[J]. 科学技术与工程, 2016, 16(2): 11-17. doi: 10.3969/j.issn.1671-1815.2016.02.003

    CHEN Ming, WANG Yunsheng, CAO Shuihe, YANG Shuancheng. Study on the morphology features and genetic mechanism of karst in Wangcang area.[J]. Science Technology and Engineering, 2016, 16(2): 11-17. doi: 10.3969/j.issn.1671-1815.2016.02.003
    [24]
    姜文, 柏道远, 尹欧, 杨帆, 彭祖武, 钟响, 李彬, 李银敏. 湘中灰山港—煤炭坝地区岩溶发育特征及其构造控制[J]. 中国岩溶, 2022, 41(1): 1-12. doi: 10.11932/karst2021y39

    JIANG Wen, BAI Daoyuan, YIN Ou, YANG Fan, PENG Zuwu, ZHONG Xiang, LI Bin, LI Yinmin. Characteristics of karst development and its structural control in the Huishangang-Meitanba area of central Hunan[J]. Carsologica Sinica, 2022, 41(1): 1-12. doi: 10.11932/karst2021y39
    [25]
    任美锷, 刘振中, 王飞燕, 程俊贤, 余锦标, 刘泽纯, 潘瑞鸿. 岩溶学概论 [M]. 北京: 商务印书馆, 1983.
    [26]
    ASRAT A. Geology, geomorphology, geodiversity and geoconservation of the Sof Omar Cave System, Southeastern Ethiopia[J]. Journal of African Earth Sciences, 2015, 108(8): 47-63.
    [27]
    BONACCI O, TERZIĆ J, ROJE-BONACCI T, FRANGEN T. An Intermittent Karst River: The Case of the Čikola River (Dinaric Karst, Croatia)[J]. Water, 2019, 11(11): 2415. doi: 10.3390/w11112415
    [28]
    GüNAY G. Karst Hydrogeology of Pamukkale Thermal Springs, Denizli, Turkey[J]. Caves and Karst of Turkey, 2022, 2: 81-84.
    [29]
    GARASIC M. Introduction to Karst and Geology of Croatia [J]. The Dinaric Karst System of Croatia, 2021: 1-24.
    [30]
    GARASIC M. Caves in Croatia—Caves in the Central Part of Dinaric Karst [J]. The Dinaric Karst System of Croatia, 2021: 101-144.
    [31]
    GüNAY G. Chapter 10.6 − Case Study: Geological and hydrogeological properties of Turkish karst and major karstic springs [J]. Groundwater Hydrology of Springs, 2010: 479-497.
    [32]
    程维明, 周成虎, 李炳元, 申元村. 中国地貌区划理论与分区体系研究[J]. 地理学报, 2019, 74(5): 839-856. doi: 10.11821/dlxb201905001

    CHENG Weiming, ZHOU Chenghu, LI Bingyuan, SHEN Yuancun. Geomorphological regionalization theory system and division methodology of China.[J]. Acta Geographica Sinica, 2019, 74(5): 839-856. doi: 10.11821/dlxb201905001
    [33]
    康小兵, 杨四福, 管振德, 张文发, 许模. 川西高原巴塘地区可溶岩地层分布与岩溶地貌发育特征[J]. 中国岩溶, 2021, 40(3): 381-388.

    KANG Xiaobing, YANG Sifu, GUAN Zhende, ZHANG Wenfa, XU Mo. Distribution of soluble rock strata and development of karst landforms in the Batang area, west Sichuan plateau[J]. Carsologica Sinica, 2021, 40(3): 381-388.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (15) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return