• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
ZHANG Jiaxin, CHU Xuewei, FU Hai, ZHANG Qilin, ZONG Shaokang. Study on laboratory acid erosion characteristics of carbonate rocks in different formations under hydrodynamic action[J]. CARSOLOGICA SINICA, 2025, 44(3): 519-531. doi: 10.11932/karst20250307
Citation: ZHANG Jiaxin, CHU Xuewei, FU Hai, ZHANG Qilin, ZONG Shaokang. Study on laboratory acid erosion characteristics of carbonate rocks in different formations under hydrodynamic action[J]. CARSOLOGICA SINICA, 2025, 44(3): 519-531. doi: 10.11932/karst20250307

Study on laboratory acid erosion characteristics of carbonate rocks in different formations under hydrodynamic action

doi: 10.11932/karst20250307
  • Received Date: 2024-10-04
  • Accepted Date: 2025-06-04
  • Rev Recd Date: 2025-05-22
  • Available Online: 2025-09-03
  • In Southwest China, carbonate rocks are extensively distributed, and their unique dissolution features pose significant challenges to engineering construction in this region. This study focused on Guizhou Province, located in the core area of the karst regions in Southwest China. A phosphogypsum stacking site with potential leakage risks and intense karst development in the surrounding area was selected as the study area. The pH values of the phosphogypsum leachate, measured in the field at the landfill, ranged from 1.12 and 2.64. The dissolution characteristics of carbonate rocks are expected to change in such an acidic environment. While existing studies have mainly investigated the dissolution effects on carbonate rocks by altering the single factor, the combined influence of lithology, fluid state, and acid concentration on carbonate rocks dissolution remains underexplored. In order to study the dissolution mechanism of carbonate rocks after the original environmental change, five strata samples in the area of Fuquan City, Guizhou Province were collected in this experiment. These samples included limestone of the Lower Triassic Maocaopu Formation (T1m), dolomite of the Anshun Formation (T1a), limestone of the Middle Triassic Qingyan Formation (T2q2), limestone of the Falang Formation (T2f2), and dolomite of the Late Aurora Dengying Formation (Z2dy). Indoor dynamic simulation experiments on dissolution were carried out under different acid concentrations and hydrodynamic conditions.The research results show: (1) Compared with the rock samples of the Maocaopu Formation, which have a relatively uniform mineral composition with a calcite content of 96.72%, the Falang Formation contains 47.22% calcite and 51.93% dolomite. Differences in the connectivity of the contact surfaces between these minerals result in the easy detachment of the surface material from the rocks. (2) At a pH value of 1, the difference in the amount of dissolution per unit area between limestone and dolomite is significant. The amount of dissolution per unit area of the dolomite from the Qingyan Formation, the Maocaopu Formation, and the Falang Formation increases by 12% to 32%, compared with that of dolomite from the Anshun Formation and the Dengying Formation. When the pH value is raised to 2, increasing the rotational speed of the disk does not result in a significant increase in the amount of dissolution per unit area for either limestone or dolomite. (3) Under hydrodynamic conditions of 200 rpm, the CaO/MgO ratio of the dolomite from the Falang Formation is 17.83, with an acid-rock reaction rate constant of 0.964×10−6. In contrast, the limestone from the Maocaopu Formation has a CaO/MgO ratio of 65.59 and an acid-rock reaction rate constant of 1.023×10−6. Under hydrodynamic conditions of 400 rpm, the difference between the acid-rock reaction rate constants of the Falang Formation and the Maocaopu Formation is 5.38×10−6. The difference in CaO/MgO ratios between the two formations is significant; however, the difference in acid-rock reaction rate constants of the Falang Formation and the Maocaopu Formation is not substantial under high hydrodynamic force. In conclusion, in acidic solutions, the chemical reaction rates (R) of the five rock groups follow the order: the Qingyan Formation>the Maocaopu Formation>the Falang Formation>the Anshun Formation>the Dengying Formation. During the dissolution of carbonate rocks, three factors interact: hydrodynamics, acid concentration, and lithology. Higher acid concentrations amplify the differences in dissolution caused by variations in hydrodynamic conditions. Conversely, increased hydrodynamic activities accentuate the influence of differences in tuff rock properties on dissolution. Under the erosive action of acidic water, the uneven erosion arises from differences in the properties of both the acid and the rock—such as compound content, mineral composition, and crystal morphology—resulting in the formation of irregular erosion channels.

     

  • loading
  • [1]
    吴应科, 毕于远, 郭纯青. 西南岩溶区岩溶基本特征与资源、环境、社会、经济综述[J]. 中国岩溶, 1998,17(2):141-150.

    WU Yingke, BI Yuyuan, GUO Chunqing. A summary of basicfeatures, resources, environment, sociality and economy in the karst areas of south-west China[J]. Carsologica sinica, 1998, 17(2): 141-150.
    [2]
    余开彪, 张华. 垃圾渗滤液对岩土的溶蚀和对其力学特性的影响[J]. 岩石力学与工程学报, 2003(10): 1753-1755.

    YU Kaibiao, ZHANG Hua. Erosion of rubbish leachate on rock and soil and influence on their mechanical properties[J]. Chinese Journal of Rock Mechanics and Engineering, 2003(10): 1753-1755.
    [3]
    彭展翔, 褚学伟. 摆纪磷石膏堆场渗漏分析[J]. 地下水, 2012, 34(5): 14-15.

    PENG Zhanxiang, CHU Xuewei. Leakage Analysis of Phosphogypsum Still in Baiji[J]. Ground Water, 2012, 34(5): 14-15.
    [4]
    吴慧群. 大沙地尾矿库岩溶发育特征及地下水环境影响分析[D]. 昆明: 昆明理工大学, 2016.

    WU Huiqun. Analysis of karst development characteristics and groundwater environmental impact of Great Sandy Strait tailing pond[D].Kunming: Kunming University of Science and Technology, 2016.
    [5]
    于奭, 严毅萍, 张春来, 王翱宇, 刘齐, 李幼玲. 酸雨对碳酸盐岩溶蚀速率影响的试验研究[J]. 桂林理工大学学报, 2011, 31(4): 539-544.

    YU Shi, YAN Yiping, ZHANG Chunlai, WANG Xiangyu, LIU Qi, LI Youling. Experimental study of the effect of acid rain on the dissolution rate of carbonate rocks[J]. Journal of Guilin University of Technology, 2011, 31(4): 539-544.
    [6]
    于奭, 李幼玲, 林玉石, 张近杨, 刘齐, 卢茜, 张春来. 酸雨对碳酸盐岩的溶蚀能力及溶蚀表面微形态[J]. 桂林理工大学学报, 2012, 32(1): 48-54.

    YU Shi, LI Youling, LIN Yushi, ZHANG Jinyang, LIU Qi, LU Qian, ZHANG Chunlai. Dissolution ability and dissolution surface micromorphology of carbonate rocks by acid rain[J]. Journal of Guilin University of Technology, 2012, 32(1): 48-54.
    [7]
    付丽, 左双英, 王露, 陈世万, 李豪逸. 层状灰岩酸蚀化学-力学损伤演化机制研究[J]. 工程地质学报, 2024,32(2):492-502.

    FU Li, ZUO Shuangying, WANG Lu, CHENG Shiwan, LI Haoyi. Study on chemical and Mechanical Damage Evolution Mechanism of Bedded Limestone in Acid Corrosion[J]. Journal of Engineering Geology, 2024,32(2):492-502.
    [8]
    Catherine Noiriel, Linda Luquot, Benoît Madé, Louis Raimbault, Philippe Gouze, Jan van der Lee. Changes in reactive surface area during limestone dissolution: an experimental and modelling study[J]. Chemical Geology, 2009, 265(1-2): 160-170. doi: 10.1016/j.chemgeo.2009.01.032
    [9]
    邓鹏, 杨春和, 郭印同, 陈青林, 刘杰. 川东北碳酸盐岩酸化损伤及力学特性试验研究[J]. 地下空间与工程学报, 2019, 15(3): 708-718.

    Deng Peng, Yang Chunhe, Guo Yintong, CHENG Qingling, LIU Jie. Experimental Study on Damage Mechanical Characteristics of Carbonate Rock with Acid Treatments in Northeast Sichuan[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(3): 708-718.
    [10]
    罗小杰, 沈建. 我国岩溶地面塌陷研究进展与展望[J]. 中国岩溶, 2018, 37(1): 101-111.

    LUO Xiaojie, SHEN Jian. Research progress and prospect of karst ground collapse in China[J]. Carsologica Sinica, 2018, 37(1): 101-111.
    [11]
    赵青. 吴家庄水库库区岩溶渗漏分析[J]. 山西建筑, 2005, 31(2): 57-58.

    ZHAO Qing. Analysis on karst leakage in Wujiazhuang reservoir district[J]. Shanxi Architecture, 2005, 31(2): 57-58.
    [12]
    黄强兵, 彭建兵, 王飞永, 刘妮娜. 特殊地质城市地下空间开发利用面临的问题与挑战[J]. 地学前缘, 2019, 26(3): 85-94.

    HUANG Qiangbing, PENG Jianbing, WANG Feiyong, LIU Nina. Issues and Challenges in the Development of Urban Underground Space in Adverse Geological Environment[J]. Earth Science Frontiers, 2019, 26(3): 85-94.
    [13]
    唐雨生, 苏培东, 喻洪平, 杜宇本. 中国岩溶区铁路工程主要地质问题研究[J]. 地下空间与工程学报, 2022, 18(z1): 296-304.

    Tang Yusheng, Su Peidong, Yu Hongping, DU Yuben. Study on Main Geological Problems of Railway Engineering in China Karst Area[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(z1): 296-304.
    [14]
    王洪涛, 曹以临. 碳酸盐岩溶蚀动力学模拟实验[J]. 中国岩溶, 1988, 7(1):63-72.

    WANG Hongtao, CAO Yilin. Dynamic Simulation of Carbonate Rock Dissolution[J]. Carsologica Sinica, 1988, 7(1): 63-72.
    [15]
    龚自珍, 黄庆达. 碳酸盐岩岩块野外溶蚀速度试验[J]. 中国岩溶, 1984,3(2):17-26.

    GONG Zizhen, HUANG Qingda. Field Corrosion Rate Tests on Carbonate Rocks[J]. Carsologica Sinica, 1984,3(2):17-26.
    [16]
    ZHANG Cheng. Carbonate rock dissolution rates in different landuses and their carbon sink effect[J]. Chinese Science Bull, 2011, 56(35): 3759-3765. doi: 10.1007/s11434-011-4404-4
    [17]
    LI Nianyin, FENG Yinsheng, LIU Pingli, LUO Zhifeng Luo, ZHAO Liqiang. Study of acid−rock reaction kinetics under high temperature and pressure conditions based on the rotating disk instrument[J]. Arabian Journal for Science and Engineering, 2015, 40(1): 135-142. doi: 10.1007/s13369-014-1504-x
    [18]
    齐宁, 孙逊, 樊家铖, 张翔宇, 潘林. 酸岩反应动力学关键问题及其进展[J]. 科学技术与工程, 2019, 19(7): 1-6.

    Q. I. Ning, SUN Xun, FAN Jia-cheng, ZHANG Xiangyu, PAN Ling. The Key Problem and Progress of Acid-rock Reaction Dynamics[J]. Science Technology and Engineering, 2019, 19(7): 1-6.
    [19]
    LI Qin, YI Xiangyi, LU Yuan, LI Gensheng, CHEN Wenling. The law of the hydrogen ion diffusion coefficient in acid rock reaction[J]. Journal of Petroleum Science and Engineering, 2016,146(10):694-701.
    [20]
    翁金桃. 方解石和白云石的差异溶蚀作用[J]. 中国岩溶, 1984, 3(1): 31-40.

    WENG Jintao. Differential dissolution of calcite and dolomite[J]. Carsologica Sinica, 1984, 3(1): 31-40.
    [21]
    黄奇波, 覃小群, 刘朋雨, 蓝芙宁, 张连凯. 不同岩性试片溶蚀速率差异及意义[J]. 地球与环境, 2015, 43(4): 379-385.

    HUANG Qibo, QIN Xiaoqun, LIU Pengyu, LAN Fuyu, ZHANG Liankai. Dissolution Rate and It's Significance of Different Lithological Tablets[J]. Earth and Environment, 2015, 43(4): 379-385.
    [22]
    LI Qin, CHEN Wenling, LU Yuan, XIA Qiangzhong. Etched surface morphology analysis experiments under different reaction rates[J]. Journal of Petroleum Science and Engineering, 2019, 172: 517-526. doi: 10.1016/j.petrol.2018.09.063
    [23]
    刘琦, 卢耀如, 张凤娥, 熊康宁. 动水压力作用下碳酸盐岩溶蚀作用模拟实验研究[J]. 岩土力学, 2010, 31(S1): 96-101.

    LIU Qi, LIU Yaoru, ZHANG Fenge, XIONG Kangning. Study of simulation experiment for carbonate rocks dissolution under hydrodynamic pressure[J]. Rock and Soil Mechanics, 2010, 31(S1): 96-101.
    [24]
    陈卫昌, 李黎, 邵明申, 梁行洲, AFOLAGBOY Lekan Olatayo. 酸雨作用下碳酸盐岩类文物的溶蚀过程与机理[J]. 岩土工程学报, 2017, 39(11): 2058-2067.

    CHEN Weichang, LI Li, SHAO Mingshen, LIANG Hangzhou, AFOLAGBOY Lekan Olatayo. Experimental study on carbonate dissolution and erosion effect under attack of simulated sulphuric acid rain[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2058-2067.
    [25]
    汪杰, 宋卫东, 付建新. 考虑节理倾角的岩体损伤本构模型及强度准则[J]. 岩石力学与工程学报, 2018, 37(10): 2253-2263.

    WANG Jie, SONG Weidong, FU Jianxin. A damage constitutive model and strength criterion of rock mass considering the dip angle of joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2253-2263.
    [26]
    邵东梅. 不同水流速度下温度对奥陶系碳酸盐岩溶蚀速度的影响[J]. 煤田地质与勘探, 2012, 40(3): 62-65.

    SHAO Dongmei. Influence of temperature on dissolution rate in Ordovician carbonate rock in different water flow rate[J]. Coal Geology & Exploration, 2012, 40(3): 62-65.
    [27]
    佘敏, 寿建峰, 沈安江, 潘立银, 胡安平, 胡圆圆. 碳酸盐岩溶蚀规律与孔隙演化实验研究[J]. 石油勘探与开发, 2016, 43(4): 564-572.

    SHE Min, SHOU Jianfeng, SHEN Anjiang, PAN Liyin, HU Pingan, HU Yuanyuan. Experimental simulation of dissolution law and porosity evolution of carbonate rock[J]. Petroleum Exploration and Development, 2016, 43(4): 564-572.
    [28]
    闫志为. 硫酸根离子对方解石和白云石溶解度的影响[J]. 中国岩溶, 2008, 27(1): 24-31.

    YAN Zhiwei. Effect of sulfate ions on the solubility of calcite and dolomite[J]. Carsologica Sinica, 2008, 27(1): 24-31.
    [29]
    林云, 任华鑫, 武亚遵, 贾方建, 刘朋, 梁家乐. 不同赋存环境下碳酸盐岩溶蚀过程试验模拟研究[J]. 水文地质工程地质, 2021, 48(2): 15-26.

    LIN Yun, REN Huaxin, WU Yazun, JIA Fangjian, LIU Peng, LIANG Jiale. Experimental simulation of thw carbonate dissolution process under different occurrence conditions[J]. Hydrogeology& Engineering Geology, 2021, 48(2): 15-26.
    [30]
    闫志为, 刘辉利, 张志卫. 温度及CO2对方解石、白云石溶解度影响特征分析[J]. 中国岩溶, 2009, 28(1): 7-10. doi: 10.3969/j.issn.1001-4810.2009.01.002

    YAN Zhiwei, LIU Huili, Zhang Zhiwei. Influences of Temperature and Pco2 on the Solubility of Calcite and Dolomite[J]. Carsologica Sinica, 2009, 28(1): 7-10. doi: 10.3969/j.issn.1001-4810.2009.01.002
    [31]
    朱筱敏. 沉积岩石学(第4版)[M]. 石油工业出版社, 2008.

    ZHU Xiaomin. Sedimentary Petrology(4th edition). [M]. Petroleum Industry Press, 2008.
    [32]
    陈如冰, 罗明明, 罗朝晖, 陈植华, 周宏. 三峡地区碳酸盐岩化学组分与溶蚀速率的响应关系[J]. 中国岩溶, 2019, 38(2): 258-264.

    CHEN Rubing, LUO Mingming, LUO Zhaohui, CHEN Zhihua, ZHOU Hong. Response of chemical components of carbonate rocks to dissolution rate in Three Gorges area[J]. Carsologica Sinica, 2019, 38(2): 258-264.
    [33]
    王楠棣, 石阳, 王姗姗, 郭杰. 酸岩表面反应速度常数与反应级数的解析关系[J]. 钻采工艺, 2017, 40(6): 56-59.

    WANG Nandi, SHI Yang, WANG Shanshan, GUO Jie. Analytical relationship between the reaction rate constant and the number of reaction stages on the surface of acid rocks[J]. Drilling & Production Technology, 2017, 40(6): 56-59.
    [34]
    LUO Zhifeng, CHENG Long, ZHAO Liqiang, XIE Yaozeng. Study on the mechanism of reactive acid transport in fractured two-mineral carbonate rocks[J]. Journal of Natural Gas Science and Engineering, 2021, 94: 104118. doi: 10.1016/j.jngse.2021.104118
    [35]
    NOIRIEL Catherine, DENG Hang. Evolution of planar fractures in limestone: the role of flow rate, mineral heterogeneity and local transport processes[J]. Chemical Geology, 2018, 497: 100-114. doi: 10.1016/j.chemgeo.2018.08.026
    [36]
    FISCHER Cornelius, ARVIDSON Rolfs, LÜTTGE Andreas. How predictable are dissolution rates of crystalline material?[J]. Geochimica Et Cosmochimica Acta, 2012, 98: 177-185. doi: 10.1016/j.gca.2012.09.011
    [37]
    XU Peng, SHENG Mao, LIN Tianyi, LIU Qing Liu, WANG Xiaoguang, Waleed Ali Khan, XU Quan. Influences of rock microstructure on acid dissolution at a dolomite surface[J]. Geothermics, 2022, 100: 102324. doi: 10.1016/j.geothermics.2021.102324
    [38]
    YOO Hyunsang, KIM Youngmin, LEE Wonsuk, LEE Jeonghwan. An experimental study on acid-rock reaction kinetics using dolomite in carbonate acidizing[J]. Journal of Petroleum Science and Engineering, 2018, 168: 478-494. doi: 10.1016/j.petrol.2018.05.041
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (14) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return