• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
ZHANG Qiuxia, LIU Donglin, YUE Dongdong, YANG Li, FENG Zhaolong, LI Shengtao. Hydrogeochemical characteristics and circulation model of deep geothermal resources in Tianjin[J]. CARSOLOGICA SINICA, 2025, 44(3): 445-461. doi: 10.11932/karst20250301
Citation: ZHANG Qiuxia, LIU Donglin, YUE Dongdong, YANG Li, FENG Zhaolong, LI Shengtao. Hydrogeochemical characteristics and circulation model of deep geothermal resources in Tianjin[J]. CARSOLOGICA SINICA, 2025, 44(3): 445-461. doi: 10.11932/karst20250301

Hydrogeochemical characteristics and circulation model of deep geothermal resources in Tianjin

doi: 10.11932/karst20250301
  • Received Date: 2024-04-03
    Available Online: 2025-09-03
  • Geothermal resources, as a pivotal renewable and environmentally benign energy source for advancing green development and establishing a clean energy system, hold immense potential for exploitation in Tianjin. Tianjin is situated in the northern region of the North China Plain, and its geothermal resources are predominantly distributed in the southern plain area, south of the Ninghe–Baodi Fault. These resources encompass porous thermal reservoirs within the Neogene Minghuazhen Formation and the Guantao Formation, as well as bedrock fracture-type thermal reservoirs in the Ordovician, Cambrian, and Mesoproterozoic Wumishan Formation (Jixian System). By integrating hydrochemical and isotope geochemical signatures, this study aims to quantitatively evaluate the mixing proportions of deep geothermal fluids and to systematically elucidate the circulation patterns of deep geothermal reservoirs, thereby providing a theoretical basis for the sustainable development of Tianjin’s geothermal resources.Sampling and analytical testing of geothermal fluids indicated a pH range of 7.08 to 8.43, suggesting a weakly alkaline nature. The TDS ranged from 762.1 to 6,040.4 mg·L−1, averaging at 1,768.97 mg·L−1. Along the flow path, the anionic composition of the geothermal fluids exhibited significant shifts, transitioning from ${\rm{HCO}}_3^{-}$ dominance to Cl and ${\rm{SO}}_4^{2-}$dominance. This transition was accompanied by an increase in TDS. Both porous geothermal reservoirs and bedrock fracture-type geothermal reservoirs displayed distinct spatial zonation in their hydrochemical characteristics. An in-depth analysis using Gibbs plots and ion ratio coefficients demonstrated that water-rock interactions are the key factors influencing the chemical composition of geothermal fluids. Specifically, Cl and Na+ primarily originate from the dissolution of salt rocks. In contrast, Ca2+ and Mg2+ ions are mainly affected by the dissolution of carbonate minerals. Furthermore, cation exchange processes resulted in an increase in Na+ concentrations and a corresponding decrease in Ca2+ and Mg2+concentrations. Gypsum dissolution also served as a significant source of ${\rm{SO}}_4^{2-}$ in geothermal fluids. The dissolution of gysum induced a common ion effect that promoted the precipitation of CaCO3, further reducing the concentrations of Ca2+ and ${\rm{HCO}}_3^{-}$. Isotopic analysis of hydrogen and oxygen revealed that atmospheric precipitation is the primary source of recharge for geothermal fluids. However, the isotopic drift observed in most geothermal fluids indicated that they did not originate directly from local precipitation. Instead, these fluids underwent deep circulation, with lateral recharge serving as the main mode of replenishment. During circulation, these fluids exchanged oxygen isotopes with the surrounding rocks.Plotting the geothermal fluids on the Na-K-Mg ternary diagram showed that all samples fell within the partially equilibrated and immature fields, indicating that either (i) the fluid–rock system has not reached cationic equilibrium, or (ii) the ascending deep fluids have been diluted by shallow cold water. Consequently, cationic geothermometers are not recommended for estimating reservoir temperatures. Calculations by PHREEQC software showed quartz and chalcedony to be in supersaturation or near saturation, suggesting that SiO2 geothermometry can reliably estimate temperatures. Reservoir temperatures derived from the quartz geothermometer were generally higher than those from the chalcedony geothermometer and exceeded the measured wellhead temperatures. Therefore, we adopted the quartz geothermometer results as representative of the reservoir temperature. The estimated thermal storage temperature range in the study area was between 67.06 °C and 121.38°C.Using the silicon-enthalpy hybrid model, we analyzed deep circulation temperatures and cold water mixing in geothermal fluids. The cold water mixing ratios ranged from 0.01 to 0.77, resulting in estimated deep circulation temperatures of the geothermal fluids between 94.54 °C and 160.90°C. To ascertain the maximum circulation depth of the geothermal fluids, we integrated the reservoir temperatures derived from both the quartz geothermometer and the hybrid model, along with the average geothermal gradient. The quartz geothermometer results indicated that the thermal circulation depth of the middle reservoir ranged approximately from 1,828.27 m to 3,150.24 m. Conversely, the hybrid model calculations revealed a deeper maximum thermal circulation depth for the deep reservoir, ranging from 2,383.28 m to 4,279.28 m.Based on the aforementioned study, we have developed an initial conceptual model for geothermal fluid circulation. This model divides the area along the Ninghe–Baodi Fault, designating the recharge zone mainly in the bedrock-exposed region of Jixian county to the north. Atmospheric precipitation infiltrates through this and adjacent deep faults, entering enclosed and semi-enclosed thermal reservoirs in the southern plain. As the precipitation flows, it is progressively heated by underlying heat sources. Over extended geological periods, the dissolution of calcite and dolomite reaches equilibrium in the groundwater, maintaining a stable HCO3 concentration. Meanwhile, Ca2+ and Mg2+ undergo processes such as cation exchange and adsorption, leading to their gradual reduction. In contrast, highly soluble rock salt results in significant accumulation of Na+ and Cl during prolonged migration. Consequently, the geothermal fluids exhibit high concentrations of Na+, Cl, and TDS. Furthermore, the mixing of cold water with the geothermal fluids along their flow path has contributed to the current characteristics of geothermal resources in the study area. This study is of great significance for understanding the genetic mechanisms, occurrence modes, and geochemical evolution patterns of underground thermal water.

     

  • loading
  • [1]
    侯福志. 李四光与天津地热会战[J]. 地热能, 2010(6): 23-25.

    HOU Fuzhi. LI Siguang and Tianjin Geothermal Battle[J]. Geothermal Energy, 2010(6): 23-25.
    [2]
    Pastorelli S, Marini L, Hunziker J. Chemistry, isotope values (δD, δ18O, δ34S(SO4)) and temperatures of the water inflows in two Gotthard tunnels, Swiss Alps[J]. Applied Geochemistry, 2002, 16(6): 633-649.
    [3]
    Yassine G, Ammar M, Hassen T, Mohamed G, Aissam B. Hydrogeochemical and environmental isotopes study of the northeastern Algerian thermal waters[J]. Environmental Earth Science, 2018, 77(22): 747. doi: 10.1007/s12665-018-7938-9
    [4]
    Jiao T, Zhonghe P, Qi G, Yingchun W, Jie Li, Tianming H, Yanlong K. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the Eastern Himalayan Syntax[J]. Geothermics, 2018, 74: 92-105.
    [5]
    王云. 滇东南地热流体地球化学特征研究[D]. 北京: 中国地震局地球物理研究所, 2021.

    WANG Yun. A research on geochemical characteristics of geothermal fluids in southeast Yunnan Province, China [D]. Beijing:Institute of Geophysics, China Earthquake Administration, 2021.
    [6]
    赵子锐, 张薇, 王贵玲, 邢林啸, 张汉雄, 赵佳怡. 冀中坳陷高阳地热田水文地球化学特征及其对地热成因的约束[J]. 中国地质, 2025, 52(1): 246-263.

    ZHAO Zirui, ZHANG Wei, WANG Guiling, XING Linxiao, ZHANG Hanxiong, ZHAO Jiayi. Hydrogeochemical characteristics of Gaoyang geothermal field in central Hebei Depression and its constraint on geothermal genesis [J]. Geology of China, 2025, 52(1):246-263.
    [7]
    张百鸣, 王心义, 林建旺. 天津地热田地热水的同位素特征分析[J]. 西部探矿工程, 2006, 18(3): 85-88. doi: 10.3969/j.issn.1004-5716.2006.03.042

    ZHANG Baiming, WANG Xinyi, LIN Jianwang. Analysis of isotope characteristics of geothermal water in Tianjin geothermal field[J]. West-China Exploration Engineering, 2006, 18(3): 85-88. doi: 10.3969/j.issn.1004-5716.2006.03.042
    [8]
    高宝珠, 聂瑞平, 黎雪梅, 穆春一. 环境同位素技术在研究天津地热流体补给和径流中的应用[J]. 地下水, 2009, 31(4): 1-3,134. doi: 10.3969/j.issn.1004-1184.2009.04.002

    GAO Baozhu, NIE Ruiping, LI Xuemei, MU Chunyi. Application of environmental isotope techniques on studying Tianjin geothermal fluid's supply and flow[J]. Ground Water, 2009, 31(4): 1-3,134. doi: 10.3969/j.issn.1004-1184.2009.04.002
    [9]
    宋美钰, 刘杰, 秦莉红, 于彦. 天津地热流体水化学特征及同位素分析[J]. 地质调查与研究, 2018, 41(2): 138-144.

    SONG Meiyu, LIU Jie, QIN Lihong, YU Yan. Analysis on the hydrochemical characteristics and isotope of geothermal fluid in Tianjin[J]. Geological Survey and Research, 2018, 41(2): 138-144.
    [10]
    杨吉龙, 柳富田, 贾志, 袁海帆, 胥勤勉, 胡云壮. 河北牛驼镇与天津地热田水化学和氢氧同位素特征及其环境指示意义[J]. 地球学报, 2018, 39(1): 71-78. doi: 10.3975/cagsb.2017.122801

    YANG Jilong, LIU Futian, JIA Zhi, YUAN Haifan, XU Qinmian, HU Yunzhuang. The hydrochemical and δ2H-δ18O characteristics of two geothermal fields in Niutuozhen of Hebei Province and Tianjin and their environmental significance[J]. Acta Geoscientica Sinica, 2018, 39(1): 71-78. doi: 10.3975/cagsb.2017.122801
    [11]
    秦莉红, 石晓今, 于彦, 刘杰, 林溦, 康楠. 天津市蓟县系雾迷山组地热流体地球化学特征[J]. 地质找矿论丛, 2019(1): 150-154.

    QIN Lihong, SHI Xiaojin, YU Yan, LIU Jie, LIN Wei, KANG Nan. Geochemical characteristics of geothermal fluid in Wumishan Formation of Jixian System in Tianjin[J]. Contributions to Geology and Mineral Resources Research, 2019(1): 150-154.
    [12]
    岳冬冬, 李胜涛, 贾小丰, 张秋霞, 冯昭龙, 杨涛. 天津山岭子地热田雾迷山组热储流体水化学特征[J]. 科学技术与工程, 2020, 20(36): 14847-14853. doi: 10.3969/j.issn.1671-1815.2020.36.010

    YUE Dongdong, LI Shengtao, JIA Xiaofeng, ZHANG Qiuxia, FENG Zhaolong, YANG Tao. Hydrochemical characteristics of heat storage fluid in Wumishan Formation of Shanlingzi geothermal field in Tianjin[J]. Science Technology and Engineering, 2020, 20(36): 14847-14853. doi: 10.3969/j.issn.1671-1815.2020.36.010
    [13]
    刘燕生. 天津市区域地质志[R]. 天津: 天津市地质矿产局, 1992.

    LIU Yansheng. Tianjin regional geological records[R]. Tianjin: Tianjin Bureau of Geology, 1992.
    [14]
    赵苏民, 高宝珠, 黎雪梅, 李会娟, 胡燕. 沧东断裂(天津段)特征及导水导热性质分析[J]. 地质调查与研究, 2007, 30(2): 121-127.

    ZHAO Sumin, GAO Baozhu, LI Xuemei, LI Huijuan, HU Yan. Character and water-temperature conductivity of the Cangdong Fault (Tianjin Segment)[J]. Geological Survey and Research, 2007, 30(2): 121-127.
    [15]
    高昌. 天津市深覆盖地区1: 5万区域地质调查综合物探研究报告[R]. 天津市地质调查研究所, 2003.

    GAO Chang. Comprehensive geophysical survey report on 1: 50,000 regional geological survey in deep coverage area of Tianjin[R]. Tianjin Geological Survey Research Institute, 2003.
    [16]
    柳鉴容, 宋献方, 袁国富, 孙晓敏, 刘鑫, 王仕琴. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报, 2009, 54(22): 3521-3531.

    LIU Jianrong, SONG Xianfang, YUAN Guofu, SUN Xiaomin, LIU Xin, WANG Shiqin. Characteristics of δ18O in precipitation over eastern monsoon China and the water vapor sources[J]. Chinese Science Bulletin,2009, 54(22): 3521-3531.
    [17]
    Fournier R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1-4): 41-50.
    [18]
    Sorey M L, Colvard E M. Hydrologic investigations in the Mammoth Corridor, Yellostone National Park and Vicinity, U. S. A[J]. Geothermics, 1997, 26(2): 221-249. doi: 10.1016/S0375-6505(96)00041-7
    [19]
    胡圣标, 何丽娟, 汪集旸. 中国大陆地区大地热流数据汇编( 第三版)[J]. 地球物理学报, 2001, 44(5): 611-626. doi: 10.3321/j.issn:0001-5733.2001.05.005

    HU Shengbiao, HE Lijuan, WANG Jiyang. Compilation of heat flow data in the China continental area (3rd Edition)[J]. Chinese Journal of Geophysics, 2001, 44(5): 611-626. doi: 10.3321/j.issn:0001-5733.2001.05.005
    [20]
    马凤如, 林黎, 王颖萍, 程万庆, 赵苏民. 天津地热资源现状与可持续性开发利用问题[J]. 地质调查与研究, 2006, 29(3): 222-228.

    MA Fengru, LIN Li, WANG Yingping, CHENG Wanqing, ZHAO Sumin. Discussion on the sustainable exploitation and utilization of geothermal resources in Tianjin[J]. Geological Survey and Research, 2006, 29(3): 222-228.
    [21]
    Schoeller H . Qualitative evaluation of groundwater resources (in methods and techniques of groundwater investigation and development)[J]. Water Research, 1967, 33: 44-52.
    [22]
    Gat J R, Gonfiautini R. Stable isotope hydrology: Deuterium and oxygen-18 in the water cycle[M]. Vienna: IAEA, 1981, 103-139.
    [23]
    Chikita K, Nishi M, Fukuyama R, Hamahara K. Hydrological and chemical budgets in a volcanic caldera lake: Lake Kussharo, Hokkaido, Japan[J]. Journal of Hydrology, 2004, 291(1-2): 91-114. doi: 10.1016/j.jhydrol.2003.12.014
    [24]
    Yokochi Reika, Purtschert Roland, Suda Yoshimitsu,Sturchio Neil C, Sültenfuß Jürgen, Vockenhuber Christof. Chemical and isotopic constraints on hydrological processes in Unzen volcanic geothermal system[J].Journal of Volcanology and Geothermal Research, 2021, 419: 107353.
    [25]
    Craig H. Standard for reporting concentration of deuterium and oxygen-18 in natural water[J]. Science, 1961, 133: 1833-1834. doi: 10.1126/science.133.3467.1833
    [26]
    PANG Zhonghe. Isotope geochemistry of geothermal waters in northern China basin: implications on deep fluidmigration[C]//Proceedings of World Geothermal Congress, Kyushu-Tohoku, Japan, 2000:1559-1563.
    [27]
    崔锐, 王学鹏, 冯波, 刘曦遥, 冯守涛, 刘帅. 基于水化学同位素技术的地热储层成因模式对比分析: 以鲁西北埕宁隆起区为例[J]. 中国岩溶, 2023, 42(5): 969-981, 994.

    CUI Rui, WANG Xuepeng, FENG Bo, LIU Xiyao, FENG Shoutao, LIU Shuai. Comparative analysis of the genesis models of different geothermal reservoirs in Chengning uplift area in northwest Shandong based on hydrochemical isotope technology [J]. Carsologica Sinica, 2023, 42(5): 969-981, 994.
    [28]
    Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088
    [29]
    卢兆群, 孟祥鑫, 亓协全, 朱光骥, 刘凯丽, 尹秀贞. 章丘北部地区地热流体水文地球化学特征及成因[J]. 中国岩溶, 2024, 43(1): 12-24. doi: 10.11932/karst2024y001

    LU Zhaoqun, MENG Xiangxin, QI Xiequan, ZHU Guangji, LIU Kaili, YIN Xiuzhen. Hydrogeochemical characteristics and genesis of geothermal water in northern Zhangqiu[J]. Carsologica Sinica, 2024, 43(1): 12-24. doi: 10.11932/karst2024y001
    [30]
    Wu Y, Wang Y. X. Geochemical Evolution of Groundwater Salinity at Basin Scale: A Case Study From Datong Basin, Northern China[J]. Environmental Science: Processes&Impact, 2014, 16(6): 1469-1479.
    [31]
    郭钰颖, 吕智超, 王广才, 马栾, 许庆宇, 黄旭娟, 高树志. 峰峰矿区东部地下水水文地球化学模拟[J]. 煤田地质与勘探, 2016, 44(6): 101-105. doi: 10.3969/j.issn.1001-1986.2016.06.019

    GUO Yuying, LV Zhichao, WANG Guangcai, MA Luan, XU Qingyu, HUANG Xujuan, GAO Shuzhi. Hydrogeochemical simulation of groundwater in Eastern Fengfeng mining area[J]. Coal Geology & Exploration, 2016, 44(6): 101-105. doi: 10.3969/j.issn.1001-1986.2016.06.019
    [32]
    Marques J M, Carreira P M, Goff F, Eggenkamp H, Silva M. Input of 87Sr/86Sr ratios and Sr geochemical signatures to update knowledge on thermal and mineral waters flow paths in fractured rocks (N-Portugal)[J]. Applied Geochemistry, 2012, 27: 1471-1481. doi: 10.1016/j.apgeochem.2012.03.007
    [33]
    李生海. 鄂尔多斯白垩系盆地北区地下水水化学演化的同位素示踪[D]. 长春: 吉林大学, 2008.

    LI Shenghai. Isotopic tracing of hydrogeochemical evolution of groundwater in the northern part of Ordos Cretaceous Basin[D]. Changchun: Jilin University, 2008.
    [34]
    袁建飞. 广东沿海地热系统水文地球化学研究[D]. 武汉: 中国地质大学(武汉), 2013.

    YUAN Jianfei. Hydrogeochemistry of the geothermal systems in coastal areas of Guangdong Province, South China[D].Wuhan: China University of Geosciences(Wuhan), 2013.
    [35]
    周海燕, 周训, 柳春晖, 虞岚, 李娟, 梁永国. 广东省从化温泉热矿水水化学与同位素特征[J]. 自然资源学报, 2008, 23(4): 155-162. doi: 10.11849/zrzyxb.2008.04.018

    ZHOU Haiyan, ZHOU Xun, LIU Chunhui, YU Lan, LI Juan, LIANG Yongguo. Hydro-chemical and isotopic characteristics of Conghua hot mineral springs in Guangdong[J]. Journal of Natural Resources, 2008, 23(4): 155-162 doi: 10.11849/zrzyxb.2008.04.018
    [36]
    Schoeller H. Qualitative evaluation of groundwater resource: methods and techniques of groundwater investigation and development[J]. Water Research, 1967, 33: 44-52.
    [37]
    Yin Z, Luo Q, Wu J, Xu S, Wu J. Identification of the long-term variations of groundwater and their governing factors based on hydrochemical and isotopic data in a river Basin[J]. Journal of Hydrology, 2021, 592: 125604. doi: 10.1016/j.jhydrol.2020.125604
    [38]
    Giggenbach W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2276. doi: 10.1016/0016-7037(88)90143-3
    [39]
    Li Qinghua, Zhang Yanpeng, Chen Wen, Yu Shaowen. The integrated impacts of natural processes and human activities on groundwater salinization in the coastal aquifers of Beihai, southern China[J]. Hydrogeology Journal, 2018, 26(5): 1513-1526. doi: 10.1007/s10040-018-1756-8
    [40]
    郭静, 毛绪美, 童晟, 冯亮. 水化学温度计估算粤西沿海深部地热系统热交换温度[J]. 地球科学, 2016, 41(12): 2075-2087. doi: 10.3799/dqkx.2016.144

    GUO Jing, MAO Xumei, TONG Sheng, FENG Liang. Using hydrochemical geothermometers calculate exchange temperature of deep geothermal system in west coast area of Guangdong Province[J]. Earth Science, 2016, 41(12): 2075-2087. doi: 10.3799/dqkx.2016.144
    [41]
    WANG Xiaocui, ZHOU Xun. Geothermometry and Circulation Behavior of the Hot Springs in Yunlong County of Yunnan in Southwest China[J]. Geofluids, 2019(1): 8432496.
    [42]
    刘明亮, 何曈, 吴启帆, 郭清海. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 2020, 45(6): 2221-2231.

    LIU Mingliang, HE Tong, WU Qifan, GUO Qinghai. Hydrogeochemistry of geothermal waters from Xiongan New Area and its indicating significance[J]. Earth Science, 2020, 43(6): 2221-2231.
    [43]
    汪集旸, 熊亮萍, 庞忠和. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993.

    WANG Jiyang, XIONG Liangping, PANG Zhonghe. Low-medium temperature geothermal system of convective type [M]. Beijing : Science Press, 1993.
    [44]
    罗伟, 杨仕江, 彭静, 袁余洋, 李生红, 曾祥建, 张信. 黔北遵义地区地热水化学特征及成因[J]. 中国岩溶, 2024, 43(1): 72-83. doi: 10.11932/karst20240106

    LUO Wei, YANG Shijiang, PENG Jing, YUAN Yuyang, LI Shenghong, ZENG Xiangjian, ZHANG Xin. Hydrochemical characteristics and genesis of geothermal water in the Zunyi area, north Guizhou[J]. Carsologica Sinica, 2024, 43(1): 72-83. doi: 10.11932/karst20240106
    [45]
    Lu L H, Pang Z H, Kong Y L, Guo Q, Wang Y C. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the tangshan geothermal system near nanjing, china: implications for sustainable development[J]. Hydrogeology Journal, 2018(1): 1-15.
    [46]
    Guo Q H, Wang Y X, Liu W O, H and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajing, Tibet, China[J]. Environmental Earth Sciences, 2010, 59 (7): 1589- 1597.
    [47]
    Guo Q, Pang Z H, Wang Y C, Tian J. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry, 2017, 81: 63-75. doi: 10.1016/j.apgeochem.2017.03.007
    [48]
    罗丹, 杨平恒, 王治祥, 冉瑜, 蒋晶, 明晓星. 渝东南断裂型碳酸盐岩地热水的形成特征[J]. 中国岩溶, 2019, 38(5): 670-681. doi: 10.11932/karst20190503

    LUO Dan, YANG Pingheng, WANG Zhixiang, RAN Yu, JIANG Jing, MING Xiaoxing. Formation characteristics of carbonate thermal water controlled by fault in southeastern Chongqing[J]. Carsologica Sinica, 2019, 38(5): 670-681. doi: 10.11932/karst20190503
    [49]
    Wang X, Zhou X, Zheng Y, Song C, Long M, Chen T, Ren Z, Yang M, Li X, Guo J. Hydrochemical characteristics and mixing behavior of thermal springs along the Bijiang River in the Lanping basin of China[J]. Environmental Earth Sciences, 2017, 76: 487.
    [50]
    赵佳怡, 张薇, 张汉雄, 屈泽伟, 李曼, 岳高凡. 四川巴塘地热田水文地球化学特征及成因[J]. 水文地质工程地质, 2019, 46(4): 81-89.

    ZHAO Jiayi, ZHANG Wei, ZHANG Hanxiong, QU Zewei, LI Man, YUE Gaofan. Hydrogeochemical characteristics and genesis of the geothermal fields in Batang of Sichuan[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 81-89.
    [51]
    张彦鹏, 黎清华, 余绍文. 海南岛东海岸官塘地区地热水水化学特征及其循环演化过程识别[J]. 地球科学, 2024, 49(3): 952-964.

    ZHANG Yanpeng, LI Qinghua, YU Shaowen. Hydrochemical characteristics constraints on evolution of geothermal water in Guantang area on the east coast of Hainan Island[J]. Earth Science, 2024, 49(3): 952-964.
    [52]
    徐刚, 伍坤宇, 王鹏, 陈永东, 李兴彦, 胡林, 刘子畅, 李海. 藏北温泉盆地地热田水文地球化学特征研究[J]. 中国岩溶, 2020, 39(3): 299-310. doi: 10.11932/karst20200301

    XU Gang, WU Kunyu, WANG Peng, CHEN Yongdong, LI Xingyan, HU Lin, LIU Zichang, LI Hai. Hydrogeochemical characteristics of the geothermal field in Wenquan basin, northern Tibet[J]. Carsologica Sinica, 2020, 39(3): 299-310. doi: 10.11932/karst20200301
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (20) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return