• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
YANG Rong, YANG Xiyan, FAN Cunhui, LI Yang, LI Yue, HUANG Zisang. Characteristics and dominant controlling factors of karst reservoirs in the middle Permian Maokou Formation of the eastern Sichuan region[J]. CARSOLOGICA SINICA, 2025, 44(2): 419-433. doi: 10.11932/karst20250216
Citation: YANG Rong, YANG Xiyan, FAN Cunhui, LI Yang, LI Yue, HUANG Zisang. Characteristics and dominant controlling factors of karst reservoirs in the middle Permian Maokou Formation of the eastern Sichuan region[J]. CARSOLOGICA SINICA, 2025, 44(2): 419-433. doi: 10.11932/karst20250216

Characteristics and dominant controlling factors of karst reservoirs in the middle Permian Maokou Formation of the eastern Sichuan region

doi: 10.11932/karst20250216
  • Received Date: 2024-07-16
  • Accepted Date: 2024-10-31
  • Rev Recd Date: 2024-09-27
  • The middle Permian Maokou Formation in the eastern Sichuan region is characterized by the widespread development of karst reservoirs. However, systematic analysis of the identification criteria and controlling factors of these karst reservoirs remains insufficient. This study integrates extensive field outcrops, drilling cores, thin sections, well logging and well logging interpretation, and seismic data to comprehensively analyze the response characteristics of karst reservoirs in the Maokou Formation of the eastern Sichuan region. Furthermore, this paper elucidates the fundamental characteristics and distribution patterns of these reservoirs while conducting a comprehensive evaluation of their primary controlling factors. The key findings are as follows. (1) Karst reservoirs exhibit a variety of identification markers. The petrological response characteristics are as follows: residual dissolution pores, ranging from 2 mm to 70 mm in diameter, and fractures—mainly high-angle structural fractures—are generally developed in both cores and outcrops. Additionally, the caves are mostly half-filled with calcite, dolomite, or asphalt, while some remain unfilled. Bauxitic clay rocks and karst breccia containing limonite are visible at the top of the stratum, indicating the existence of ancient weathering crust. The logging response characteristics are as follows, the acoustic time difference, compensated neutron curves and compensated density curves are "box-shaped" in the karst cave section. The phenomena of pronounced acoustic time difference leap are observed, accompanied by a reduction in the positive difference of deep and shallow dual lateral resistivity. Imaging logging shows the black patchy karst cave characterized by low resistance and high conductivity. Natural gamma values in the karst cave section is generally lower than 40 API, with low content of radioactive elements. The logging response is characterized by frequent well leakage and venting during drilling, mainly occurring in the range of 0 m to 100 m from the top of the Maokou Formation. High-yield gas wells are mostly located in the second and third members of the Maokou Formation, reflecting the development of fracture-cavity reservoirs. The seismic response characteristics are marked by "low-frequency, high-amplitude, and wide-crest" reflections at the top of the Maokou Formation. In the dense area of karst caves, "bright spots" anomalies appear. The development of karst caves reduces wave impedance difference, resulting in downward-dragged and chaotic reflections. (2) The rocks of karst reservoirs are mainly composed of grain limestone. The main reservoir spaces consist of dissolved pores and caves, with caves being the most significant reservoir space, accounting for more than 65 %. These caves are predominantly distributed in isolated patterns, exhibiting poor connectivity. Dissolved pores, including intragranular, intergranular, and intercrystal types are predominantly filled. The measured porosity of the karst reservoir ranges from 2.0% to 8.7 %, with an average of 3.4 %. The permeability varies from 0.008 mD to 65.263 mD, averaging 18.3 mD, showing the characteristics of low porosity and low permeability. Among the three types of karst reservoirs, fracture-cavity reservoirs exhibit the most favorable physical properties, with a porosity of 3.3 %, and a permeability of 23.3 mD. In contrast, the cavity-type reservoirs demonstrate inferior physical properties due to the lack of filtration channels. Karst landforms are categorized into karst highlands, steep karst slopes, gentle karst slopes, and karst basins. The porosity of steep karst slopes (3.96 %) is significantly higher than that of gentle karst slopes (3.27 %) and karst highlands (2.10%). Vertically, the karst reservoirs are mainly distributed within 100 m from the top of the Maokou Formation, particularly in the Mao 2a sub-member and the Mao 3 member. These reservoirs exhibit poor lateral ductility, presenting as isolated point-like or belt-like distributions. Horizontally, there is a NW–SE zonal distribution in the Linshui–Fengdu area, with reservoir thicknesses ranging from 7.68 m to 11.04 m. (3) Karst reservoirs are influenced by the combined effects of sedimentation, karstification and tectonism. Specifically, the grain shoals (intra-platform shoals and platform margin shoals) are mainly developed in the Mao 2 and the Mao 3 members. The thickness of the granular limestone is positively correlated with the thickness of the reservoir ( R2 = 0.82 ), which indicates that the grain shoals provide a high-quality material foundation for the karst reservoirs and offer percolation channels for diagenetic fluids in later stages. The karst paleogeomorphology controls the distribution of karst reservoirs. High-yield wells are mostly located in the geomorphic units of residual mounds on steep karst slopes and gentle karst slopes. The transitional zones between karst highlands and karst steep karst slopes are also favorable areas for the development of karst reservoirs. Multiple stages of fracturing improve the reservoir storage performance. Specially, three stages of fractures came into being during the Dongwu Movement (early high-angle fractures), the Indosinian–Yanshan Movement (mid-term X-shaped fractures), and the Himalayan Movement (late horizontal fractures). The late horizontal fractures intersected the earlier fractures and connected with karst caves, significantly enhancing the permeability. For instance, the fracture density of Well W78 reached 11 fractures/m, resulting in a substantial increase in daily gas production. These fractures provide channels for oil and gas infiltration, facilitating the accumulation of large oil and gas reservoirs.(4) Based on the analysis of the dominant controlling factors, two favorable areas have been identified. The first is the Linshui–Fengdu steep karst slope zone, which is characterized by thick grain shoals reaching up to 23 m in the Mao 3 Member, the well-developed residual mound landform, dense karst caves and fractures, all of which contribute to optimal reservoir physical properties. The second is the Dazhou–Kaijiang gentle karst slope zone. This zone features the superposition of multi-stage fractures, particularly med-term fractures, which significantly enhance permeability. Although karstification is relatively weak, this area has the potential of high-yield production.

     

  • loading
  • [1]
    张宇, 赵伦, 李长海, 张祥忠. 古岩溶油气储层研究进展[J]. 中国岩溶, 2022, 41(5):808-824. doi: 10.11932/karst202204y10

    ZHANG Yu, ZHAO Lun, LI Changhai, ZHANG Xiangzhong. Research progress of paleokarst oil and gas reservoirs[J]. Carsologica Sinica, 2022, 41(5): 808-824. doi: 10.11932/karst202204y10
    [2]
    马永生, 何登发, 蔡勋育, 刘波. 中国海相碳酸盐岩的分布及油气地质基础问题[J]. 岩石学报, 2017, 33(4):1007-1020.

    MA Yongsheng, HE Dengfa, CAI Xunyu, LIU Bo. Distribution and fundamental science questions for petroleum geology of marine carbonate in China[J]. Acta Petrologica Sinica, 2017, 33(4): 1007-1020.
    [3]
    Hollis, C. Diagenetic controls on reservoir properties of carbonate successions within the Albian-Turonian of the Arabian Plate. Petrol. Geo-sci. 2011, 17(3), 223-241.
    [4]
    HAO Yuxin , Rebecca Bell, HU Dongfeng, FAN Rui, WANG Yanghua. WITHDRAWN: Prediction of Permian karst reservoirs in the Yuanba gas field, northern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2023, 154: 106160.
    [5]
    张玺华, 田兴旺, 杨岱林, 王云龙, 孙奕婷, 洪海涛, 夏茂龙, 汪华, 徐亮. 四川盆地海相碳酸盐岩储层成因及特征[J]. 天然气勘探与开发, 2021, 44(3):1-10.

    ZHANG Xihua, TIAN Xinwang, YANG Dailin, WANG Yunlong, SUN Yiting, HONG Haitao, XIA Maolong, WANG Hua, XU Liang. Genesis and characteristics of marine carbonate reservoirs in Sichuan Basin[J]. Natural Gas Exploration and Development, 2021, 44(3): 1-10.
    [6]
    江青春, 胡素云, 汪泽成, 池英柳, 杨雨, 鲁卫华, 王海真, 李秋芬. 四川盆地茅口组风化壳岩溶古地貌及勘探选区[J]. 石油学报, 2012, 33(6):949-960. doi: 10.7623/syxb201206005

    JIANG Qingchun, HU Shuyun, WANG Zecheng, CHI Yingliu, YANG Yu, LU Weihua, WANG Haizhen, LI Qiufen. Paleokarst landform of the weathering crust of Middle Permian Maokou Formation in Sichuan Basin and selection of exploration regions[J]. Acta Petrolei Sinica, 2012, 33(6): 949-960. doi: 10.7623/syxb201206005
    [7]
    李素华, 胡昊, 朱兰, 余洋, 石国山, 贾霍甫. 川北元坝地区茅口组生屑滩岩溶储层识别及预测[J]. 石油物探, 2021, 60(4):584-594. doi: 10.3969/j.issn.1000-1441.2021.04.007

    LI Suhua, HU Hao, ZHU Lan, YU Yang, SHI Guoshan, JIA Huofu. Identification of bioclastic beach reservoir in Maokou formation, Yuanba area, north Sichuan Basin[J]. Geophysical Propecting for Petrolrnm, 2021, 60(4): 584-594. doi: 10.3969/j.issn.1000-1441.2021.04.007
    [8]
    戴晓峰, 冯周, 王锦芳. 川中茅口组岩溶储层地球物理特征及勘探潜力[J]. 石油地球物理勘探, 2017, 52(5):1049-1058, 882.

    DAI Xiaofeng, FENG Zhou, WANG Jinfang. Geologic and geophysical characteristics and exploration potential of karst reservoirs at Maokou Formation in the central Sichuan Basin[J]. Oil Geophysical Prospecting, 2017, 52(5): 1049-1058, 882.
    [9]
    冯磊, 刘宏, 谭磊, 夏吉文, 伍亚, 陈聪, 曾云贤, 于童. 岩溶古地貌恢复及油气地质意义:以四川盆地泸州地区中二叠统茅口组为例[J]. 断块油气田, 2023, 30(1):60-69.

    FENG Lei, LIU Hong, TAN Lei, XIA Jiwen, WU Ya, CHEN Cong, ZENG Yunxian, YU Tong. Karst paleogeomorphology restoration and hydrocarbon geological significance: a case study of middle Permian Maokou Formation in Luzhou area of Sichuan Basin[J]. Fault-Block Oil & Gas Field, 2023, 30(1): 60-69.
    [10]
    杨明磊, 诸丹诚, 李涛, 李海平, 黎霆, 邹华耀. 川南地区中二叠统茅口组颗粒滩对早成岩期岩溶储层的控制[J]. 现代地质, 2020, 34(2):356-369.

    YANG Minglei,ZHU Dancheng,LI Tao,LI Haiping,LI Ting,ZOU Huayao. Control of eogenetic karst reservoir by shoals in Middle Permian Maokou Formation, southern Sichuan Basin[J]. Geoscience, 2020, 34(2): 356-369.
    [11]
    王国锋, 张大伟, 邓守伟, 杨光, 宋文礼. 四川盆地自贡区块茅口组岩溶储层发育特征及其主控因素[J]. 天然气工业, 2022, 42(9):63-75. doi: 10.3787/j.issn.1000-0976.2022.09.006

    WANG Guofeng, ZHANG Dawei, DENG Shouwei, YANG Guang, SONG Wenli. Development characteristics and main controlling factors of Maokou Formation karst reservoirs in Zigong block of the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(9): 63-75. doi: 10.3787/j.issn.1000-0976.2022.09.006
    [12]
    曹华, 陈延贵, 陈聪, 高兆龙, 山述娇, 李天军, 胡罗嘉, 谢静平. 四川盆地东北部茅口组岩溶储层控制因素[J]. 天然气勘探与开发, 2022, 45(3):1-10. doi: 10.12055/gaskk.issn.1673-3177.2022.03.001

    CAO Hua, CHEN Yangui, CHEN Cong, GAO Zhaolong, SHAN Shujiao, LI Tianjun, HU Luojia, XIE Jingping. Controlling factors of karst reservoir in Maokou Formation, northeastern Sichuan Basin[J]. Natural Gas Exploration and Development, 2022, 45(3): 1-10. doi: 10.12055/gaskk.issn.1673-3177.2022.03.001
    [13]
    何斌, 徐义刚, 王雅玫, 肖龙. 东吴运动性质的厘定及其时空演变规律[J]. 地球科学(中国地质大学学报), 2005, 30(1):89-96.

    HE Bin, XU Yigang, WANG Yamei, XIAO Long. Nature of the Dongwu movement and its temporal and spatial evolution[J]. Earth Science(Journal of China University of Geosciences), 2005, 30(1): 89-96.
    [14]
    黎荣, 胡明毅, 潘仁芳, 胡忠贵. 川中地区中二叠统断溶体发育特征及形成机制[J]. 中国石油勘探, 2019, 24(1):105-114. doi: 10.3969/j.issn.1672-7703.2019.01.011

    LI Rong, HU Mingyi, PAN Renfang, HU Zhonggui. Development characteristics and forming mechanism of Middle Permian fault-karst carbonate reservoirs in the central Sichuan Basin[J]. China Petroleum Exploration, 2019, 24(1): 105-114. doi: 10.3969/j.issn.1672-7703.2019.01.011
    [15]
    梁新权, 周云, 蒋英, 温淑女, 付建刚, 王策. 二叠纪东吴运动的沉积响应差异:来自扬子和华夏板块吴家坪组或龙潭组碎屑锆石LA-ICPMS U-Pb年龄研究[J]. 岩石学报, 2013, 29(10): 3592-3606.

    LIANG Xinquan, Zhouyun, JIANG Ying, WEN Shunv, FU Jiangang, WANG Che. Difference of sedimentary response to Dongwu Movement: Study on LA-ICPMS U-Pb ages of detrital zircons from Upper Permian Wujiaping or Longtan Formation from the Yangtze and Cathaysia blocks[J]. Acta Petrologica Sinica, 2013, 29(10): 3592-3606.
    [16]
    崔思华, 王明磊, 彭秀丽, 杨冬. 碳酸盐岩地层综合划分方法研究[J]. 西南石油大学学报: 自然科学版, 2011, 33(5):41-48.

    CUI Sihua, WANG Minglei, PENG Xiuli, YANG Dong. Study on the synthetical division method for carbonate formation[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2011, 33(5): 41-48.
    [17]
    胡罗嘉, 黄世伟, 谭万仓, 谭秀成, 苏成鹏, 胡笙, 李明隆, 刘菲, 冯亮. 四川盆地东部二叠系茅口组层序地层特征及地质意义[J]. 海相油气地质, 2021, 26(4):357-366. doi: 10.3969/j.issn.1672-9854.2021.04.008

    HU Luojia, HUANG Shiwei, TAN Wanchang, TAN Xiucheng, SU Chengpeng, HU Sheng, LI Minglong, LIU Fei, FENG Liang. Sequence stratigraphic characteristics and geological significance of the Permian Maokou Formation in the eastern Sichuan Basin[J]. Marine Origin Petroleum Geology, 2021, 26(4): 357-366. doi: 10.3969/j.issn.1672-9854.2021.04.008
    [18]
    罗鹏, 李国蓉, 施泽进, 周大志, 汤鸿伟, 张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2):74-78. doi: 10.3969/j.issn.1673-8926.2010.02.013

    LUO Peng, LI Guorong, SHI Zejin, ZHOU Dazhi, TANG Hongwei, ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of Maokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74-78. doi: 10.3969/j.issn.1673-8926.2010.02.013
    [19]
    肖陈静, 胡修权, 施泽进, 谭谦, 李江寒, 易驰, 李世临, 徐发波. 利用滩地比技术描述碳酸盐岩沉积相:以川东地区茅二a亚段为例[J]. 中国岩溶, 2022, 41(6):869-879. doi: 10.11932/karst2022y03

    XIAO Jing, HU Xiuquan, SHI Zejin, TAN Qian, LI Jianghan, YI Chi, LI Shilin, XU Fabo. Describing carbonate sedimentary facies by use of the radio of shoals to the whole strata: Taking the layer a of Mao2 submember in eastern Sichuan for example[J]. Garsologica Sinica, 2022, 41(6): 869-879. doi: 10.11932/karst2022y03
    [20]
    李红敬, 解习农, 颜佳新, 陈慧, 简晓玲. 扬子地区典型剖面二叠系不同沉积相地球化学特征[J]. 地质科技情报, 2010, 29(2):16-23.

    LI Hongjing, XIE Xinong, YAN Jiaxin, CHEN Hui, JIAN Xiaoling. Geochemical characterostics of different facies of Permain typical sections in the Yangtze region[J]. Geological and Technology Information, 2010, 29(2): 16-23.
    [21]
    赵永刚, 陈景山, 李凌, 古永红, 张春雨, 张栋梁, 张文强, 周通. 基于残余岩溶强度表征和裂缝预测的碳酸盐岩储层评价:统良里塔格组为例[J]. 吉林大学学报: 地球科学版, 2015, 45(1):25-36.

    ZHAO Yonggang, CHEN Jingshan, LI Ling, GU Yonghong, ZHANG Chunyu, ZHANG Dongliang, ZHANG Wenqiang, ZHOU Tong. Evaluation of caobonate reservoir based on residual karst intensity characterization and structural fracture prediction: A case from the Upper Ordovician Lianglitage Formation in the West of Center Tarim Basin[J]. Journal University: Earth Science Edition, 2015, 45(1): 25-36.
    [22]
    李阳. 塔河油田奥陶系碳酸盐岩溶洞型储集体识别及定量表征[J]. 中国石油大学学报(自然科学版), 2012, 36(1):1-7.

    Li Yang. Ordovician carbonate fracture-cavity reservoirs identification and quantitative characterization in Tahe Oilfield[J]. Journal of China University of Petroleum (Natural Science Edition), 2012, 36(1): 1-7.
    [23]
    程雪莹. 川东地区中二叠统茅口组岩溶特征及发育模式[D]. 成都: 西南石油大学, 2017.

    Cheng X Y. Karst characteristics and denelopment model of Maokou Formation of Middle Permian in eastern Sichuan Basin[D]. Chengdu: Southwest Petroleum University, 2017.
    [24]
    桑琴, 黄静, 程超, 吴昌龙, 彭祚远. 蜀南地区茅口组古岩溶识别标志及储层预测[J]. 大庆石油学院学报, 2012, 36(2):53-57.

    SHANG Qin, HUANG Jing, CHENG Chao, WU Changlong, PENG Zhuoyuan. Identification mark and reservoir prediction of palaeokarst of the Maokou Formation in southern Sichuan Province[J]. Journal of Daqing Petroleum Institute, 2012, 36(2): 53-57.
    [25]
    张满郎, 郭振华, 张林, 付晶, 郑国强, 谢武仁, 马石玉. 四川安岳气田龙王庙组颗粒滩岩溶储层发育特征及主控因素[J]. 地学前缘, 2021, 28(1):235-248.

    ZHANG Manlang, GUO Zhenhua, ZHANG Lin, FU Jing, ZHENG Guoqiang, XIE Wuren, MA Shiyu. Characteristics of and main factors controlling the karst shoal reservoir of the Lower Cambrian Longwangmiao Formation in the Anyue gas field, central Sichuan Basin, China[J]. Earth Science Frontiers, 2021, 28(1): 235-248.
    [26]
    李珊珊, 姜鹏飞, 刘磊, 雷程, 曾云贤, 陈仕臻, 周刚. 四川盆地高磨地区寒武系沧浪铺组碳酸盐岩颗粒滩地震响应特征及展布规律[J]. 岩性油气藏, 2022, 34(4):22-31.

    LI Shanshan, JIANG Pengfei, LIU Lei, LEI Cheng, ZENG Yunxian, CHEN Shizhen, ZHOU Gang. Seismic response characteristics and distribution law of carbonate shoals of Cambrian Canglangpu Formation in Gaoshiti-Moxi area, Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(4): 22-31.
    [27]
    肖笛, 谭秀成, 山述娇, 陈韵骐, 夏吉文, 杨坚, 周涛, 程遥. 四川盆地南部中二叠统茅口组古岩溶地貌恢复及其石油地质意义[J]. 地质学报, 2014, 88(10):1992-2002.

    XIAO Di, TAN Xiucheng, SHAN Shujiao, CHEN Yunqi, XIA Jiwen, YANG Jian, ZHOU Tao, CHENG Yao. The restoration of palaeokarst geomorphology of Middle Permian Maokou Formation and its petroleum geological significance in southern Sichuan Basin[J]. Acta Geologica Sinica, 2014, 88(10): 1992-2002.
    [28]
    张亚, 陈双玲, 张晓丽, 张玺华, 谢忱, 陈聪, 杨雨然, 高兆龙. 四川盆地茅口组岩溶古地貌刻画及油气勘探意义[J]. 岩性油气藏, 2020, 32(3): 44-55.

    ZHANG Ya, CHEN Shuangling, ZHANG Xiaoli, ZHANG Xihua, XIE Chen, CHEN Cong,YANG Yuran, GAO Zhaolong. Restoration of paleokarst geomorphology of Lower Permian Maokou Formation and its petroleum exploration implication in Sichuan Basin. Lithologic Reservoirs, 2020, 32(3): 44-55.
    [29]
    马珂欣, 胡明毅, 史今雄, 邓庆杰. 川西南自贡地区二叠系茅口组储层裂缝特征及期次演化[J]. 地质科技通报, 2024, 43(3):180-191.

    MA Kexin, HU Mingyi, SHI Jinxiong, DENG Qingjie. Characteristic and formation period of fractures in the reservoirs of Permian Maokou Formation, Zigong area, Southwest Sichuan Basin[J]. Journal University: Earth Science Edition, 2024, 43(3): 180-191.
    [30]
    TANG Xianglu, JIANG Zhenxue, JIANG Shu, WANG Hongyan, HE Zhiliang , FENG Jie. Structure, burial, and gas accumulation mechanisms of lower Silurian Longmaxi Formation shale gas reservoirs in the Sichuan Basin (China) and its periphery[J]. AAPG Bulletin, 2021, 105(12): 2425-2447.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (5) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return