• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
HUANG Yancai, JIN Bo, ZENG Mudan, XIANG Gang. Research on the spatial distribution and risk control of 'three forms of nitrogen' in groundwater in an urban area of southwest China[J]. CARSOLOGICA SINICA, 2025, 44(2): 274-282. doi: 10.11932/karst20250206
Citation: HUANG Yancai, JIN Bo, ZENG Mudan, XIANG Gang. Research on the spatial distribution and risk control of "three forms of nitrogen" in groundwater in an urban area of southwest China[J]. CARSOLOGICA SINICA, 2025, 44(2): 274-282. doi: 10.11932/karst20250206

Research on the spatial distribution and risk control of "three forms of nitrogen" in groundwater in an urban area of southwest China

doi: 10.11932/karst20250206
  • Received Date: 2024-10-01
  • Accepted Date: 2025-02-14
  • Rev Recd Date: 2025-01-17
  • Since the implementation of drought-resistant water exploration and well-drilling work, the utilization of groundwater in the karst areas of Southwest China has been increasing. While groundwater has generated much attention, the problems of groundwater pollution have also come to light, particularly concerning the "three forms of nitrogen" pollution in water. The sources of nitrogen pollution are complex, and its pathways are varied. Under the special hydrogeological conditions of karst areas, surface pollutants are more likely to infiltrate into the ground. Given the concealment and mobility of groundwater, pollutants continuously migrate with the groundwater flow. Once contaminated, the difficulty of restoration and remediation is extremely high. Taking an urban area in Southwest China as an example, this study conducted hydrogeological surveys and water sample testing. Based on data such as springs, boreholes, and water quality, this study utilized the method of Inverse Distance Weighting (IDW) to interpolate and analyze the "three forms of nitrogen" in groundwater. Combined with the field model of groundwater flow, the spatial distribution of "three forms of nitrogen" was analyzed. Furthermore, the areas for risk control were delineated through overlay analysis. The results show that there were differences in the spatial distribution of "three forms of nitrogen" in the study area. Urban boreholes and sewage treatment plants had a greater impact on NH$_4^{+}$-N concentration, while agricultural and residential areas significantly influenced ${\rm{NO}}_3^{-}$-N levels. The overall situation regarding NO$_2^{-}$-N was favorable, with no significant pollution detected. Additionally, there were notable differences in the concentrations of the "three forms of nitrogen", with the highest concentration of ${\rm{NO}}_3^{-}$-N reaching 96.00 mg·L−1, which was much higher than the concentrations of NH$_4^{+}$-N (8.00 mg·L−1) and NO$_2^{-}$-N (0.500 mg·L−1). This variation is attributed to the characteristics of karst areas. Under conditions of adequate oxygen content, NH$_4^{+}$-N and NO$_2^{-}$-N were converted into ${\rm{NO}}_3^{-}$-N. With the use of the Class III water index specified in the Standard for Groundwater Quality (GB/T 14848-2017) as the control boundary, the study area is divided into three zones through ArcGIS overlay analysis, key control area (Class IV-V), secondary control area (Class III), and general area (Class I-II). In key control areas, the focus is on controlling sewage discharge and leakage, as well as nitrogen loss from agricultural activities. Specific measures include strengthening control of pollution emission in densely populated residential areas, ensuring the impermeability of residential water wells, sewage pipelines, and wastewater treatment plants. In agricultural-intensive areas, the implementation of scientific fertilization and rational allocation of fertilizers should be prioritized to prevent the migration of "three forms of nitrogen" at the source. In secondary control areas, the emphasis is on preventing further pollution and optimizing water quality indicators. Specific measures include optimizing the sewage systems in residential areas, further controlling pollution emissions, enhancing regional soil and water conservation capacities, and improving vegetation absorption efficiency. Additionally, measures such as crop rotation, optimizing crop irrigation methods, ecological breeding, and reducing random sewage discharge should be implemented to comprehensively improve the regional ecological space. In general areas, the focus is on maintaining the current status and preventing pollution.

     

  • loading
  • [1]
    黄海波, 高扬, 曹杰君, 黄红艳, 张旭, 毛亮, 张进忠, 周培. 都市农业村域地下水非点源氮污染及其风险评估[J]. 水土保持学报, 2010, 24(3):56-59, 70.

    HUANG Haibo, GAO Yang, CAO Jiejun, HUANG Hongyan, ZHANG Xu, MAO Liang, ZHANG Jinzhong, ZHOU Pei. Non-point source pollution of nitrogen in groundwater in urban agricultural region of Shanghai and risk assessment[J]. Journal of Soil and Water Conservation, 2010, 24(3): 56-59, 70.
    [2]
    涂春霖, 陈庆松, 尹林虎, 李强, 和成忠, 刘振南. 我国地下水硝酸盐污染及源解析研究进展[J]. 环境科学, 2024, 45(6):3129-3141.

    TU Chunlin, CHEN Qingsong, YIN Linhu, LI Qiang, HE Chengzhong, LIU Zhennan. Research advances of groundwater nitrate pollution and source apportionment in China[J]. Environmental Science, 2024, 45(6): 3129-3141.
    [3]
    吕晓立, 刘景涛, 朱亮, 刘春燕, 刘俊建. 兰州市地下水中“三氮”污染特征及成因[J]. 干旱区资源与环境, 2019, 33(1):95-100.

    LYU Xiaoli, LIU Jingtao, ZHU Liang, LIU Chunyan, LIU Junjian. Distribution and source of nitrogen pollution in groundwater of Lanzhou city[J]. Journal of Arid Land Resources and Environment, 2019, 33(1): 95-100.
    [4]
    黄福杨, 单婷倩, 林静, 刘菲, 王彬, 黄一倪. 典型西南岩溶地下水抗生素污染指示因子识别[J]. 地质科技通报, 2024, 43(2):283-292.

    HUANG Fuyang, SHAN Tingqian, LIN Jing, LIU Fei, WANG Bin, HUANG Yini. Identification of indicators for antibiotic pollution in typical karst groundwater, Southwest China[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 283-292.
    [5]
    Kalhor K, Ghasemizadeh R, Rajic L, Alshawabkeh A. Assessment of groundwater quality and remediation in karst aquifers: A review[J]. Groundwater for Sustainable Development, 2019, 8: 104-121. doi: 10.1016/j.gsd.2018.10.004
    [6]
    马杰. 地下水监测在污染场地管理中的重要作用、存在问题与对策建议[J]. 环境工程学报, 2022, 16(4):1063-1067. doi: 10.12030/j.cjee.202110059

    MA Jie. Significance, problems and countermeasures of groundwater monitoring for contaminated site management[J]. Chinese Journal of Environmental Engineering, 2022, 16(4): 1063-1067. doi: 10.12030/j.cjee.202110059
    [7]
    黄艳采, 张忠俊, 向刚, 陆雄轩, 王嘉铭, 黄卫星. 污染场地地下水“三氮”空间分布研究[J]. 环境工程, 2023, 41(S2):203-205, 208.

    HUANG Yancai, ZHANG Zhongjun, XIANG Gang, LU Xiongxuan, WANG Jiaming, HUANG Weixing. Study on spetial distribution of ammona-N, nitrati-N and nitrite-N in groundwater at a polluted site[J]. Environmental Engineering, 2023, 41(S2): 203-205, 208.
    [8]
    崔亚丰, 何江涛, 王曼丽, 赵阅坤, 王菲. 岩溶地区地下水污染风险评价方法探究:以地苏地下河系流域为例[J]. 中国岩溶, 2016, 35(4):372-383.

    CUI Yafeng, HE Jiangtao, WANG Manli, ZHAO Yuekun, WANG Fei. Exploration of risk assessment method towards groundwater contamination in karst region: A case study in Disu underground river system basin[J]. Carsologica Sinica, 2016, 35(4): 372-383.
    [9]
    陈卓, 刘文晓, 张丹, 吴志远, 夏天翔. 典型化工废渣污染土壤中汞的空间分布规律研究[J]. 环境科学学报, 2022, 42(4):422-431.

    CHEN Zhuo, LIU Wenxiao, ZHANG Dan, WU Zhiyuan, XIA Tianxiang. Spatial distribution and vertical migration of mercury in soil contaminated by chemical waste residues[J]. Acta Scientiae Circumstantiae, 2022, 42(4): 422-431.
    [10]
    Gong G, Mattevada S, O'Bryant S. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas[J]. Environmental Research, 2014, 130: 59-69. doi: 10.1016/j.envres.2013.12.005
    [11]
    Almodaresi S A, Mohammadrezaei M, Dolatabadi M, Nateghi M R. Qualitative analysis of groundwater quality indicators based on Schuler and Wilcox diagrams: IDW and Kriging models[J]. Journal of Environmental Health and Sustainable Development, 2019, 4(4): 903-912.
    [12]
    吴志强, 潘林艳, 代俊峰, 黄亮亮, 万祖鹏. 漓江流域岩溶与非岩溶农业小流域水体硝酸盐源解析[J]. 农业工程学报, 2022, 38(6):61-71. doi: 10.11975/j.issn.1002-6819.2022.06.007

    WU Zhiqiang, PAN Linyan, DAI Junfeng, HUANG Liangliang, WAN Zupeng. Nitrate source apportionment of water in karst and non-karst agricultural sub-basins in the Lijiang River Basin of Guilin, Guangxi, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6): 61-71. doi: 10.11975/j.issn.1002-6819.2022.06.007
    [13]
    许可, 陈鸿汉. 地下水中三氮污染物迁移转化规律研究进展[J]. 中国人口·资源与环境, 2011, 21(S2):421-424.

    XU Ke, CHEN Honghan. Progresson three forms of nitrogen contaminant transport and transform in groundwater[J]. China Population, Resources And Environment, 2011, 21(S2): 421-424.
    [14]
    李霄, 王晓光, 柴璐, 朱巍, 何海洋, 王长琪. 沉积盆地地下水无机氮来源示踪及其演化模式[J]. 中国环境科学, 2021, 41(4):1856-1867. doi: 10.3969/j.issn.1000-6923.2021.04.040

    LI Xiao, WANG Xiaoguang, CHAI Lu, ZHU Wei, HE Haiyang, WANG Changqi. Sources tracing and evolution model of inorganic nitrogen of groundwater in sedimentary basin[J]. China Environmental Science, 2021, 41(4): 1856-1867. doi: 10.3969/j.issn.1000-6923.2021.04.040
    [15]
    王晓玲, 郑晓通, 李松敏, 张福超. 农田排水沟渠底泥-间隙水-上覆水氮磷迁移转化规律研究[J]. 水利学报, 2017, 48(12):1410-1418.

    WANG Xiaoling, ZHENG Xiaotong, LI Songmin, ZHANG Fuchao. Study on the migration and transformation of nitrogen and phosphorus in sediment-interstitial water-overlying water in farmland drainage ditch[J]. Journal of Hydraulic Engineering, 2017, 48(12): 1410-1418.
    [16]
    李丽君, 刘强. 黑龙江省海伦地区浅层地下水中“三氮”分布特征及来源解析 [J]. 岩矿测试, 2023, 42(4): 809-822.

    LI Lijun, LIU Qiang. Distribution characteristics and source analysis of “Three Nitrogen” in shallow groundwater in Hailun area of Heilongjiang Province [J]. Rock and Mineral Analysis, 2023, 42(4): 809−822.
    [17]
    黄颖, 江涛, 丁杰, 禤映雪, 陈建耀, 李睿. 城镇化流域地下水氮素组成特征及来源解析[J]. 热带地理, 2023, 43(7):1400-1410.

    Huang Ying, Jiang Tao, Ding Jie, Xuan Yingxue, Chen Jianyao, Li Rui. Composition and source identification of nitrogen in groundwater in an urbanized basin[J]. Tropical Geography, 2023, 43(7): 1400-1410.
    [18]
    黄金廷, 宋歌, 蒲芳, 王嘉玮, 李宗泽, 张方, 孙芳强. 层状包气带“三氮”污染物迁移转化原位实验研究 [J]. 生态环境学报, 2022, 31(6): 1208-1214.

    HUANG Jinting , SONG Ge , PU Fang , WANG Jiawei , LI Zongze , ZHANG Fang , SUN Fangqiang. Migration and transformation of “Three Nitrogen” pollutants in multilayer unsaturated zone: an in situ experiment [J]. Ecology and Environmental Sciences, 2022, 31(6): 1208-1214.
    [19]
    赵然, 韩志伟, 申春华, 张水, 涂汉, 郭永丽. 典型岩溶地下河流域水体中硝酸盐源解析[J]. 环境科学, 2020, 41(6):2664-2670.

    ZHAO Ran, HAN Zhiwei, SHEN Chunhua, ZHANG Shui, TU Han, GUO Yongli. Identifying nitrate sources in a typical karst underground river basin[J]. Environmental Science, 2020, 41(6): 2664-2670.
    [20]
    李扬, 杨桢, 康凤新, 刘金勇, 孙彦伟, 黄静波. 东阿水文地质单元地下水硝酸盐污染来源的同位素分析[J]. 中国岩溶, 2019, 38(1):19-27. doi: 10.11932/karst20190103

    LI Yang, YANG Zhen, KANG Fengxin, LIU Jinyong, SUN Yanwei, HUANG Jingbo. Isotope analysis on the source of nitrate contamination to groundwater in the Dong’e hydrogeologic unit[J]. Carsologica Sinica, 2019, 38(1): 19-27. doi: 10.11932/karst20190103
    [21]
    杨平恒, 华茂松, 罗为群, 郭文静. 基于CiteSpace的岩溶地下水硝酸盐示踪研究进展[J]. 中国岩溶, 2024, 43(3):563-574. doi: 10.11932/karst2024y005

    YANG Pingheng, HUA Maosong, LUO Weiqun, GUO Wenjing. Research progress of nitrate tracing in karst groundwater based on CiteSpace[J]. Carsologica Sinica, 2024, 43(3): 563-574. doi: 10.11932/karst2024y005
    [22]
    Organization W H. Guidelines for drinking-water quality: incorporating the first and second addenda [R]. Geneva: World Health Organization, 2022.
    [23]
    卞建民, 张真真, 韩宇. 松嫩平原地下水氮污染空间变异性及健康风险评价[J]. 重庆大学学报, 2015, 38(4):104-111. doi: 10.11835/j.issn.1000-582X.2015.04.015

    BIAN Jianmin, ZHANG Zhenzhen, HAN Yu. Spatial variabilitu and health risk assessment of nitrogen pollution in groundwater in Songnen Plain[J]. Journal of Chongqing Unibersity, 2015, 38(4): 104-111. doi: 10.11835/j.issn.1000-582X.2015.04.015
    [24]
    Zhang Y, Wu J, Xu B. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China[J]. Environmental Earth Sciences, 2018, 77(7): 273. doi: 10.1007/s12665-018-7456-9
    [25]
    陈余道, 程亚平, 蒋亚萍, 林鹏, 蒋灵芝. 岩溶地下河反硝化作用的有限性:一个碳酸盐岩管道的实验研究[J]. 环境科学学报, 2016, 36(10):3629-3635.

    CHEN Yudao, CHENG Yaping, JIANG Yaping, LIN Peng, JIANG Lingzhi. Limitation of denitrification in karst subterranean river: A carbonate-conduit experimental study[J]. Acta Scientiae Circumstantiae, 2016, 36(10): 3629-3635.
    [26]
    任坤, 潘晓东, 梁嘉鹏, 彭聪, 曾洁. 氧同位素解析典型岩溶流域地下水中硝酸盐来源与归趋[J]. 环境科学, 2021, 42(5):2268-2275.

    REN Kun, PAN Xiaodong, LIANG Jiapeng, PENG Cong, ZENG Jie. Sources and fate of nitrate in groundwater in a typical karst basin: insights from carbon, nitrogen, and oxygen isotopes[J]. Environmental Science, 2021, 42(5): 2268-2275.
    [27]
    扈志勇, 杨梅. 岩溶区土壤氮流失及其对地下水的污染[J]. 人民长江, 2008(18):32-34. doi: 10.3969/j.issn.1001-4179.2008.18.012

    HU Zhiyong, YANG Mei. N loss in soil in karst area and its pollution to underground water[J]. Yangtze River, 2008(18): 32-34. doi: 10.3969/j.issn.1001-4179.2008.18.012
    [28]
    庞朝晖, 李立波, 岳禹峰. 农村地下水硝酸盐氮污染及其防治[J]. 湖北农业科学, 2010, 49(10):2605-2608. doi: 10.3969/j.issn.0439-8114.2010.10.081

    PENG Zhaohui, LI Libo, YUE Yufeng. Remediation of groundwater polluted by nitrate in rural area[J]. Hubei Agricultural Sciences, 2010, 49(10): 2605-2608. doi: 10.3969/j.issn.0439-8114.2010.10.081
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (7) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return