• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
WEI Lei, MEI Hongbo, ZHAO Peng, YANG Yingdong, LUO Zeyang, LIU Bowen. Research on early warning for meteorological risks of rainfall-induced landslide hazards in typical areas of southwest Yunnan[J]. CARSOLOGICA SINICA, 2024, 43(6): 1376-1385. doi: 10.11932/karst20240614
Citation: WEI Lei, MEI Hongbo, ZHAO Peng, YANG Yingdong, LUO Zeyang, LIU Bowen. Research on early warning for meteorological risks of rainfall-induced landslide hazards in typical areas of southwest Yunnan[J]. CARSOLOGICA SINICA, 2024, 43(6): 1376-1385. doi: 10.11932/karst20240614

Research on early warning for meteorological risks of rainfall-induced landslide hazards in typical areas of southwest Yunnan

doi: 10.11932/karst20240614
  • Received Date: 2024-03-25
    Available Online: 2025-03-21
  • The area of Longyang district–Mangshi section is located in the middle and lower reaches of the Nujiang river and the Daying river. The landform in this area is dominated by medium mountains, wide valleys, and basins. This area is characterized by a southern subtropical monsoon climate and a southern subtropical mountain monsoon climate. The overall structural features within the area are composed of a series of near north-south faults, and their derived secondary transverse tensile faults as well as tight folds. Lithology is mainly composed of metamorphic rock strata in the Proterozoic Gaoligong mountains, strata from the Paleozoic to the Mesozoic, and clay, fragments, gravel from the Quaternary. The study area is typically concentrated and developed with rainfall-induced landslides, and geological disasters mainly include collapses, landslides, debris flows and ground subsidence. Among these disasters, there are 1,175 landslide events, with rainfall-induced landslides accounting for over 95%. This type of disaster is the most significant in the study area. Water systems are intensively distributed in this area, with large depths of river valleys, and a pronounced variation in terrain. Landslide hazards are mainly distributed along valleys on both sides of rivers. Based on the assessment of vulnerability and the analysis of rainfall thresholds, an early warning model for rainfall-induced landslide risks has been established. This model can effectively support early warnings for regional landslide risks.The study area is located in the section of Longyang district–Mangshi section in southwest Yunnan Province, which is prone to frequent landslide hazards. This study employed Pearson correlation coefficient to analyze the relationships among various evaluation factors. A total of 13 evaluation factors, including elevation, slope and slope direction, were selected, and grid units measuring 100 m×100 m were divided. The random forest model was employed to evaluate the vulnerability of landslide hazards and the area under curve (AUC) was utilized to verify the accuracy of the model. Then, by analyzing the coupling relationship between landslides and rainfall, the early effective rainfall intensity (EI) was calculated. The EI and rainfall duration (D) were used as the horizontal and vertical coordinates respectively, to create a double-logarithmic coordinate system. This system illustrated the scatter distribution of the probability of landslide occurrence time and allowed for the fitting of the EI-D threshold curve according to the classification standards for landslide warning grades. Subsequently, a rainfall threshold model was created. Finally, the susceptibility classification region and the EI-D rainfall threshold were superimposed and combined to establish early warning levels for meteorological risks of rainfall-induced landslides based on the EI-D rainfall threshold.Research findings indicate that the AUC value of the training results for the random forest model is 0.84. This suggests that the model selection is appropriate and that the susceptibility evaluation results are reliable. An EI-D rainfall threshold model has been developed, and four EI-D rainfall threshold curves have been fitted. In conjunction with the evaluation results of the vulnerability of the study area, a dynamic evaluation model for landslide risks based on the EI-D rainfall threshold has been established. This model can serve as a reference for early warning evaluations of meteorological risks in the study area.

     

  • [1]
    黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3):433-454.

    HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454.
    [2]
    中华人民共和国国土资源部. 全国地质灾害通报[R]. 2021.

    Ministry of Land and Resources of the People's Republic of China. China Geological Hazard Bulletin[R]. 2021.
    [3]
    吴益平, 张秋霞, 唐辉明, 肖威. 基于有效降雨强度的滑坡灾害危险性预警[J]. 地球科学(中国地质大学学报), 2014, 39(7):889-895. doi: 10.3799/dqkx.2014.083

    WU Yiping, ZHANG Qiuxia, TANG Huiming, XIAO Wei. Landslide hazard warning based on effective rainfall intensity[J]. Earth Science (Journal of China University of Geosciences), 2014, 39(7): 889-895. doi: 10.3799/dqkx.2014.083
    [4]
    Alireza Arabameri, Biswajeet Pradhan, Luigi Lombardo. Comparative assessment using boosted regression trees, binary logistic regression, frequency ratio and numerical risk factor for gully erosion susceptibility modelling[J]. Catena, 2019, 183(20): 104223.
    [5]
    R C Wilson. Rainstorms, pore pressures, and debris flows: A theoretical framework[J]. Landslides in a Semi-arid Environment, 1989, 2(4): 101-117.
    [6]
    R C Wilson, G F Wieczorek. Rainfall thresholds for the initiation of debris flows at La Honda, California[J]. Environmental and Engineering Geoscience, 1995, 1(1): 11-27.
    [7]
    Bartelletti Carlotta, Avanzi Giacomo D'Amato, Galanti Yuri, Giannecchini Roberto, Mazzali Alberto. Assessing shallow landslide susceptibility by using the SHALSTAB model in Eastern Liguria (Italy)[J]. Rendiconti Online Societa Geologica Italiana, 2015, 35(134): 17-20.
    [8]
    Taizo Endo. Probable distribution of the amount of rainfall causing landslides[J]. Bulletin of the Disaster Prevention Research Institute, 1970,20(1):141-150.
    [9]
    T Onodera, R Yoshinaka, H Kazama. Slope failures caused by heavy rainfall in Japan[J]. Journal of the Japan Society of Engineering Geology, 1974, 15(4): 191-200. doi: 10.5110/jjseg.15.191
    [10]
    谢剑明, 刘礼领, 殷坤龙, 杜惠良, 纽学新. 浙江省滑坡灾害预警预报的降雨阀值研究[J]. 地质科技情报, 2003, 22(4):101-105.

    XIE Jianming, LIU Liling, YIN Kunlong, DU Huiliang, NIU Xuexin. Study on the threshold values of rainfall of land slide hazards for early-warning and prediction in Zhejiang Province[J]. Geological Science and Technology Information, 2003, 22(4): 101-105.
    [11]
    陈洪凯, 魏来, 谭玲. 降雨型滑坡经验性降雨阈值研究综述[J]. 重庆交通大学学报(自然科学版), 2012, 31(5):990-996.

    CHEN Hongkai, WEI Lai, TAN Ling. Review of research on empirical rainfall threshold of rainfall-induced landslide[J]. Journal of Chongqing Jiaotong University (Natural Science), 2012, 31(5): 990-996.
    [12]
    黄发明, 陈佳武, 范宣梅, 黄劲松, 周创兵. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模[J]. 地球科学, 2022, 47(12):4609-4628.

    HUANG Faming, CHEN Jiawu, FAN Xuanmei, HUANG Jingsong, ZHOU Chuangbing. Logistic regression fitting of rainfall-induced landslide occurrence probability and continuous landslide hazard prediction modelling[J]. Earth Science, 2022, 47(12): 4609-4628.
    [13]
    Nel Caine. The rainfall intensity–duration control of shallow landslides and debris flows[J]. Geografiska Annaler Series A: Physical Geography, 1980, 62(1): 23-27.
    [14]
    F Guzzetti, S Peruccacci, M Rossi, C P Stark. Rainfall thresholds for the initiation of landslides in central and southern Europe[J]. Meteorology and Atmospheric Physics, 2007, 98(3): 239-267.
    [15]
    John Mathew, D Giri Babu, S Kundu, K Vinod Kumar, C C Pant. Integrating intensity–duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India[J]. Landslides, 2013, 11(4): 575-588.
    [16]
    王新伟, 张漓黎, 莫德科, 叶宗达, 江凡. 基于信息量和多层感知机分类器模型耦合的平果市斜坡类地质灾害易发性评价[J]. 中国岩溶, 2023, 42(2):370-381.

    WANG Xinwei, ZHANG Lili, MO Deke, YE Zongda, JIANG Fan. Hillslope geo-hazard susceptibility assessment in Pingguo City based on coupling of CF information value and MLPC classifier model[J]. Carsologica Sinica, 2023, 42(2): 370-381.
    [17]
    郭子正, 殷坤龙, 黄发明, 付圣, 张文. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2019, 38(2):287-300.

    GUO Zizheng, YIN Kunlong, HUANG Faming, FU Sheng, ZHANG Wen. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 287-300.
    [18]
    Paraskevas Tsangaratos, Constantinos Loupasakis, Konstantinos Nikolakopoulos, Varvara Angelitsa, Loanna Ilia. Developing a landslide susceptibility map based on remote sensing, fuzzy logic and expert knowledge of the Island of Lefkada, Greece[J]. Environmental Earth Sciences, 2018, 77(10): 363.
    [19]
    C Gokceoglu. Discussion on "Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS" by Choi et al[J]. Engineering Geology, 2012, 129-130: 104-105.
    [20]
    Li Yongwei, Wang Xianmin, Mao Hang. Influence of human activity on landslide susceptibility development in the Three Gorges area[J]. Natural Hazards, 2020, 104(3): 2115-2151.
    [21]
    吴润泽, 胡旭东, 梅红波, 贺金勇, 杨建英. 基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例[J]. 地球科学, 2021, 46(1):321-330.

    WU Runze, HU Xudong, MEI Hongbo, HE Jinyong, YANG Jianying. Spatial susceptibility assessment of landslides based on random forest: A case study from Hubei section in the Three Gorges Reservoir Area[J]. Earth Science, 2021, 46(1): 321-330.
    [22]
    杨迎冬, 汤沛, 肖华宗, 晏祥省. 云南省地质灾害与水系关系初步分析[J]. 灾害学, 2017, 32(3):36-39. doi: 10.3969/j.issn.1000-811X.2017.03.007

    YANG Yingdong, TANG Pei, XIAO Huazong, YAN Xiangsheng. Preliminary analysis on relationships between geo-hazards and river systems of Yunnan Province[J]. Journal of Catastrophology, 2017, 32(3): 36-39. doi: 10.3969/j.issn.1000-811X.2017.03.007
    [23]
    董师师, 黄哲学. 随机森林理论浅析[J]. 集成技术, 2013, 2(1):1-7.

    DONG Shishi, HUANG Zhexue. A brief theoretical overview of random forests[J]. Journal of Integration Technology, 2013, 2(1): 1-7.
    [24]
    Dennis M Staley, Joseph E Gartner, Jason W Kean. Objective definition of rainfall intensity–duration thresholds for post-fire flash floods and debris flows in the area burned by the Waldo Canyon Fire, Colorado, USA[J]. Springer International Publishing, 2015(2): 621-624.
    [25]
    鲍其云, 麻土华, 李长江, 王保欣. 浙江62个丘陵山区县引发滑坡的降雨强度−历时阈值[J]. 科技通报, 2016, 32(5):48-55, 95.

    BAO Qiyun, MA Tuhua, LI Changjiang, WANG Baoxin. Rainfall intensity–duration thresholds for the initiation of landslides in 62 hilly and mountainous counties of Zhejiang Province[J]. Bulletin of Science and Technology, 2016, 32(5): 48-55, 95.
    [26]
    胡娟, 闵颖, 李华宏, 李湘, 李超, 李磊. 云南省山洪地质灾害气象预报预警方法研究[J]. 灾害学, 2014, 29(1):62-66.

    HU Juan, MIN Ying, LI Huahong, LI Xiang, LI Chao, LI Lei. Meteorological early-warning research of mountain torrent and geologic hazard in Yunnan Province[J]. Journal of Catastrophology, 2014, 29(1): 62-66.
    [27]
    曹中山. 基于易发性和临界降雨阈值的滑坡危险性预警建模研究[D]. 南昌:南昌大学, 2020.

    CAO Zhongshan. Study on landslide risk warning modeling based on sensitivity and critical rainfall threshold[D]. Nanchang: Nanchang University, 2020.
  • Relative Articles

    [1]HUANG Yancai, JIN Bo, ZENG Mudan, XIANG Gang. Research on the spatial distribution and risk control of "three forms of nitrogen" in groundwater in an urban area of southwest China[J]. CARSOLOGICA SINICA, 2025, 44(2): 274-282. doi: 10.11932/karst20250206
    [2]WANG Yangyang, HUANG Shengdong, PAN Dong, HUANG Guiren, WANG Yu, CHANG He, PU Yue. Characteristics of groundwater system and assessment of groundwater vulnerability of the Tengchong volcano group in western Yunnan[J]. CARSOLOGICA SINICA, 2024, 43(6): 1327-1340. doi: 10.11932/karst20240610
    [3]TANG Pei, ZHU Chuanbing, JIANG Yuebin, ZHOU Cuiqiong, LI Xiaomei, ZHANG Lingze, XIAO Huazong, ZHANG Wenjun. Reflection and enlightenment on monitoring and early warning of debris flows in Eryuan: A case study of the "9.13" large-scale freshet-induced debris flow of the Tiejia river[J]. CARSOLOGICA SINICA, 2024, 43(6): 1398-1407. doi: 10.11932/karst20240616
    [4]LONG Ziwei, WANG Hong, JIA Yu, WU Yongjun, PENG Junjie. Extraction of land use information in karst areas based on Sentinel-2 images[J]. CARSOLOGICA SINICA, 2024, 43(3): 672-683. doi: 10.11932/karst20240308
    [5]LIU Yongliang, ZHANG Wei, LIU Zhenyu, YI Lianxing, WU Qiuju, LIANG Nan, GAN Fuping, WU Jianqiang, HAN Kai. Application of high-density resistivity method and audio-frequency magnetotelluric method in the detection of landslide structure in Houchang town[J]. CARSOLOGICA SINICA, 2024, 43(2): 441-453. doi: 10.11932/karst20240208
    [6]HUANG Cheng, DENG Yunlong, YAN Xiangsheng, ZHOU Xincheng. A study on multiple-model evaluation of landslide susceptibility[J]. CARSOLOGICA SINICA, 2024, 43(6): 1386-1397. doi: 10.11932/karst20240615
    [7]LU Yulong, YE Gaofeng, YANG Xian, LU Zhilin, LIU Yang, ZHANG Lianzhi, LI Ganlong. Study on susceptibility of karst collapse based on normal cloud model in Yonghe town, Liuyang City[J]. CARSOLOGICA SINICA, 2023, 42(6): 1294-1302. doi: 10.11932/karst2023y027
    [8]WANG Xinwei, ZHANG Lili, MO Deke, YE Zongda, JIANG Fan. Hillslope geo-hazard susceptibility assessment in Pingguo City based on coupling of CF information value and MLPC classifier model[J]. CARSOLOGICA SINICA, 2023, 42(2): 370-381. doi: 10.11932/karst20230208
    [9]YANG Chen, DENG Fei, SHI Xuguo. Monitoring subsidence characteristics of Baishazhou karst area in Wuhan with Sentinel-1 images from 2015 to 2019[J]. CARSOLOGICA SINICA, 2023, 42(3): 558-564. doi: 10.11932/karst2023y018
    [10]WANG Guilin, QIANG Zhuang, CAO Cong, CHEN Yao, HAO Jinyu. Evaluation of susceptibility to karst collapse based on the geodetector and analytic hierarchy method: An example of the Zhongliangshan area in Chongqing[J]. CARSOLOGICA SINICA, 2022, 41(1): 79-87. doi: 10.11932/karst2021y08
    [11]WU Yuanbin, LIU Zhikui, YIN Renchao, LEI Mingtang, DAI Jianling, LUO Weiquan, PAN Zongyuan. Evaluation of karst collapse susceptibility in Huaihua area,Hunan Province based on AHP and GIS[J]. CARSOLOGICA SINICA, 2022, 41(1): 21-33. doi: 10.11932/karst2021y44
    [12]ZHANG Jie, BI Pan, WEI Aihua, TAO Zhibing, ZHU Huichao. Assessment of susceptibility to karst collapse in the Qixia Zhongqiao district of Yantai based on fuzzy comprehensive method[J]. CARSOLOGICA SINICA, 2021, 40(2): 215-220. doi: 10.11932/karst2021y07
    [13]CHEN Xiaoting, HUANG Bolin, LI Bin, ZHANG Peng, QIN Zhen. Karstification and slope failure in carbonate areas of Three Gorges Reservoir[J]. CARSOLOGICA SINICA, 2020, 39(4): 567-576. doi: 10.11932/karst20200412
    [14]CHEN Liquan, ZHAO Chaoying, REN Chaofeng, WANG Peijie, CHEN Xuerong, CHEN Hengyi. Monitoring the Jianshanying landslide in a karst mountainous area of Guizhou by optical remote sensing[J]. CARSOLOGICA SINICA, 2020, 39(4): 518-523. doi: 10.11932/karst20200407
    [15]JIA Long, MENG Yan, DAI Jianling. Analysis of karst collapse susceptibility in Guang-Fo-Zhao regions[J]. CARSOLOGICA SINICA, 2017, 36(6): 819-829. doi: 10.11932/karst20170604
    [16]WU Xin, HUANG Jingjun, MIAO Shixian. Susceptibility zoning and mapping of karst collapse in Xuzhou using analytic hierarchy process-fuzzy comprehensive evaluation method[J]. CARSOLOGICA SINICA, 2017, 36(6): 836-841. doi: 10.11932/karst20170606
    [17]YAN Meng-meng, ZHOU Zhou, WANG Ji, GU Xiao-ping, XIAO Jian-yong. Study on the dynamic change of soil moisture in karst area:A case of Huaxi district in Guiyang City[J]. CARSOLOGICA SINICA, 2016, 35(4): 446-452. doi: 10.11932/karst20160413
    [18]ZHOU Wen liang, JIANG Guang hui, CHEN Guo fu, BAI Yu, WANG Kai ran. Characteristics of hydrologic and hydrochemical regime of the dripping water in the Xiaoyan cave, Guilin[J]. CARSOLOGICA SINICA, 2013, 32(1): 51-56. doi: 10.3969/j.issn.1001-4810.2013.01.008
    [19]BAO Li-xin. Analysis and discussion on the stability of Jinjiang Landslide under the operating conditions of earthquake[J]. CARSOLOGICA SINICA, 2012, 31(1): 87-93. doi: 10.3969/j.issn.1001-4810.2012.01.015
    [20]Zhang Jianyong. A SUMMARY ON THE PRESENT ADVANCESOF LANDSLIDE STUDIES[J]. CARSOLOGICA SINICA, 1999, 18(3): 280-286. doi: 10.3969/j.issn.1001-4810.1999.03.013
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-072025-080510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.5 %FULLTEXT: 26.5 %META: 56.3 %META: 56.3 %PDF: 17.2 %PDF: 17.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %其他: 2.0 %其他: 2.0 %上海: 2.0 %上海: 2.0 %中卫: 0.7 %中卫: 0.7 %丽江: 2.0 %丽江: 2.0 %北京: 13.2 %北京: 13.2 %南宁: 0.7 %南宁: 0.7 %南昌: 2.0 %南昌: 2.0 %合肥: 2.0 %合肥: 2.0 %呼和浩特: 0.7 %呼和浩特: 0.7 %天津: 0.7 %天津: 0.7 %太原: 2.0 %太原: 2.0 %孝感: 0.7 %孝感: 0.7 %宁波: 0.7 %宁波: 0.7 %安顺: 3.3 %安顺: 3.3 %宣城: 2.0 %宣城: 2.0 %山景城: 5.3 %山景城: 5.3 %广州: 3.3 %广州: 3.3 %成都: 2.0 %成都: 2.0 %扬州: 1.3 %扬州: 1.3 %昆明: 3.3 %昆明: 3.3 %普洱: 1.3 %普洱: 1.3 %武汉: 1.3 %武汉: 1.3 %海得拉巴: 2.6 %海得拉巴: 2.6 %淄博: 2.0 %淄博: 2.0 %温州: 2.6 %温州: 2.6 %漯河: 1.3 %漯河: 1.3 %盐城: 0.7 %盐城: 0.7 %福州: 2.6 %福州: 2.6 %秦皇岛: 0.7 %秦皇岛: 0.7 %红河: 1.3 %红河: 1.3 %芒廷维尤: 9.3 %芒廷维尤: 9.3 %芝加哥: 3.3 %芝加哥: 3.3 %萍乡: 0.7 %萍乡: 0.7 %衡阳: 0.7 %衡阳: 0.7 %西宁: 3.3 %西宁: 3.3 %贵阳: 1.3 %贵阳: 1.3 %运城: 3.3 %运城: 3.3 %连云港: 0.7 %连云港: 0.7 %遵义: 1.3 %遵义: 1.3 %邯郸: 0.7 %邯郸: 0.7 %郑州: 2.0 %郑州: 2.0 %重庆: 1.3 %重庆: 1.3 %长沙: 1.3 %长沙: 1.3 %鹰潭: 0.7 %鹰潭: 0.7 %其他其他上海中卫丽江北京南宁南昌合肥呼和浩特天津太原孝感宁波安顺宣城山景城广州成都扬州昆明普洱武汉海得拉巴淄博温州漯河盐城福州秦皇岛红河芒廷维尤芝加哥萍乡衡阳西宁贵阳运城连云港遵义邯郸郑州重庆长沙鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return