• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 43 Issue 5
Dec.  2024
Turn off MathJax
Article Contents
DAN Yong, DENG Min, ZHANG Qingyu, YAN Jianfei, NIE Guoquan, DONG Hongqi, JI Shaocong, XIONG Guoqing, LU Bingxiong, MA Xiaolin. Development characteristics and genetic mechanism of carbonate minerals in shale member of the lower Carboniferous Luzhai formation in the depression of central Guangxi[J]. CARSOLOGICA SINICA, 2024, 43(5): 1210-1222. doi: 10.11932/karst20240516
Citation: DAN Yong, DENG Min, ZHANG Qingyu, YAN Jianfei, NIE Guoquan, DONG Hongqi, JI Shaocong, XIONG Guoqing, LU Bingxiong, MA Xiaolin. Development characteristics and genetic mechanism of carbonate minerals in shale member of the lower Carboniferous Luzhai formation in the depression of central Guangxi[J]. CARSOLOGICA SINICA, 2024, 43(5): 1210-1222. doi: 10.11932/karst20240516

Development characteristics and genetic mechanism of carbonate minerals in shale member of the lower Carboniferous Luzhai formation in the depression of central Guangxi

doi: 10.11932/karst20240516
  • Received Date: 2023-08-23
    Available Online: 2024-12-30
  • The Carboniferous was significant for the development of "black strata" in the world. The exploration and development of shale gas in North America first began with the Carboniferous marine shale, and the Carboniferous (Mississippian) Barnett Shale has become one of the most important strata of shale gas production in the world. The distribution of Carboniferous marine shale in China is relatively limited, primarily developed in the Qian–Gui rift basin at the edge of the Yangtze plate. It is roughly distributed in depressions such as central Guangxi–Nanpanjiang in Guangxi, south Guizhou–southwest Guizhou, and central Hunan. In recent years, drilling activities in the Carboniferous depressions, such as Guirongye Well 1 and Qianziye Well 1 have yielded promising shale gas displays. In 2023, Guirongye Well 2 achieved industrial gas flow from the Carboniferous after the compression fracture was completed, indicating favorable exploration prospects. The Carboniferous strata in the Guizhou–Guangxi region are anticipated to become the next significant exploration target in China, following the shale gas of Wufeng–Longmaxi formation. However, drilling in this area revealed a rapid phase transition in the early Carboniferous, unstable distribution of shale, high levels of carbonate minerals within the shale, and the presence of common carbonate rock interlayers. On-site experiments on water invasion and gas logging suggest that shale gas production is influenced by carbonate minerals in the shale. The origins of these carbonate minerals in the shale of this region and their impact on gas production remain unclear.To this end, the Luzhai formation shale of the early Carboniferous in the depression of central Guangxi was selected to analyze the origin of carbonate minerals within the shale. This study aims to provide theoretical reference for predicting distribution of various types of carbonate minerals in the subsequent shale formation, as well as for gas content analysis and the optimization of the lower Carboniferous shale gas "sweet spot" in the depression of central Guangxi. The study area is situated in the Liucheng slope in the northern depression of central Guangxi. Field profiles and core samples from Rongye Well 1 were utilized as the research objects. Following the identification of carbonate mineral types, geochemical analyses of cathodoluminescence and carbon and oxygen isotopes were conducted. This was achieved through a comprehensive approach including X-ray whole-rock diffraction, thin section identification, and other analytical tests.Research findings indicate as follows, (1) The study found that the carbonate minerals in the Luzhai formation shale are primarily composed of calcite, with a content ranging from 5% to 80%, averaging at 30.33%. Additionally, there is a small amount of dolomite, varing from 0% to 9%, with an average of 2.1%. Carbonate minerals are mainly developed in carbonaceous shale, calcareous mudstone, silty calcareous mudstone, bioclastic carbonaceous mudstone, mud-microcrystalline limestone, and muddy limestone. They are also present in calcite veins distributed along the layers and in structural calcite veins that traverse the layers. (2) Cathodoluminescence analysis shows that massive calcareous mudstone and horizontally laminated micrite carbonate minerals are generally non-luminescent. Some carbonate minerals in silty calcareous mudstone emit weak red light, while others do not. The luminescent carbonate minerals include calcareous cements and certain calcareous bioclastics. The "floating" carbonate bioclastics found in carbonaceous shale typically emit weak red light. Lens-shaped and vein-shaped calcite exhibits weak cathode luminescence. (3) Analyses of carbon and oxygen isotopes show that the δ13C values of native carbonate minerals range from 2.70‰ to 5.81‰, with an average of 4.68‰. The δ18O‰ values range from –8.89‰ to –5.97‰, with an average of –7.54‰. For allochthonous carbonate minerals, the δ13C values range from 2.62‰ to 4.39‰, with an average of 3.30‰, and the δ18O‰ values range from –8.89‰ to –7.67‰, with an average of –8.04‰. The δ13C‰ values of diagenetic vein-shaped carbonate minerals range from –1.18‰ to 5.73‰, with an average of 2.78‰, while the δ18O‰ values range from –12.76‰ to –5.75‰, with an average of –9.77‰.Comprehensive exploration shows that the formation of carbonate minerals primarily results from normal sedimentation in seawater, followed by long-distance transport in seawater after being fragmented by waves and storm currents, and recrystallization during diagenesis. The formation of horizontal vein-shaped calcite may be attributed to supersaturated precipitation within differential compaction and contraction fractures filled by formation fluids during burial, while the vertical vein-shaped calcite is associated with multiple tectonic activities. Based on these findings, various models of carbonate mineral genesis have been established, providing theoretical reference for the optimal selection of sweet spots for shale gas in the lower Carboniferous depression of central Guangxi.

     

  • loading
  • [1]
    戴金星, 董大忠, 倪云燕, 洪峰, 张素荣, 张延玲, 丁麟. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学, 2020, 31(6):745-760.

    DAI Jinxing, DONG Dazhong, NI Yunyan, HONG Feng, ZHANG Surong, ZHANG Yanling, DING Lin. Some essential geological and geochemical issues about shale gas research in China[J]. Natural Gas Geoscience, 2020, 31(6): 745-760.
    [2]
    Scott L Montgomery, Daniel M Jarvie, Kent A Bowker, Richard M Pollastro. Mississippian Barnett shale, Fort Worth basin, north-central Texas: Gas-shale play with multi-trillion cubic foot potentia[J]. AAPG Bulletin, 2005, 89(2): 155-175. doi: 10.1306/09170404042
    [3]
    Loucks R G, Reed R M, Ambrose W A. ABSTRACT: Mineralogy and diagenetic history of the Upper Cretaceous Woodbine sandstone in the Giant East Texas Field[J]. Gcags Transactions, 2009, 59: 485.
    [4]
    Iain A, John R Underhill. Structural constraints on Lower Carboniferous shale gas exploration in the Craven Basin, NW England[J]. Petroleum Geoscience, 2020, 26(2): 303-324.
    [5]
    杜远生, 龚一鸣, 吴诒, 冯庆来, 刘本培. 黔桂地区泥盆纪层序地层和台内裂陷槽的形成演化[J]. 沉积学报, 1997, 15(4):11-17.

    DU Yuansheng, GONG Yiming, WU Yi, FENG Qinglai, LIU Benpei. Devonian sequence stratigrapny and formation and evolution of intraplatform rift trough in the Guangxi and Guizhou area, China[J]. Acta Sedimentologica Sinica, 1997, 15(4): 11-17.
    [6]
    梅冥相, 马永生, 高金汉, 孟庆芬, 易定红, 李东海. 滇黔桂盆地及其邻区晚古生代层序地层格架及相对海平面变化[J]. 现代地质, 2002, 18(4):365-373. doi: 10.3969/j.issn.1000-8527.2002.04.006

    MEI Mingxiang, MA Yongsheng, GAO Jinhan, MENG Qingfen, YI Dinghong, LI Donghai. Sequence-stratigraphic framework and relative sea-level changes of Late Paleozoic in the Dianqiangui basin and its adjacent areas[J]. Geoscience, 2002, 18(4): 365-373. doi: 10.3969/j.issn.1000-8527.2002.04.006
    [7]
    丁文龙. 页岩气构造地质[M]. 上海:华东理工大学出版社, 2017.
    [8]
    李建忠, 李登华, 董大忠, 王社教. 中美页岩气成藏条件、分布特征差异研究与启示[J]. 中国工程科学, 2012, 14(6): 56-63. doi: 10.3969/j.issn.1009-1742.2012.06.008

    LI Jianzhong, LI Denghua, DONG Dazhong, WANG Shejiao. Comparison and enlightenment on formation condition and distribution characteristics of shale gas between China and U. S.[J]. China Engineering Science, 2012, 14(6): 56-63. doi: 10.3969/j.issn.1009-1742.2012.06.008
    [9]
    苑坤, 王超, 覃英伦, 于抒放, 陈榕, 石砥石, 包书景, 林拓, 周志. 黔南地区(黔紫页1井)发现上古生界海相页岩气[J]. 中国地质, 2017, 44(6):1253-1254.

    YUAN Kun, WANG Chao, QIN Yinglun, YU Shufang, CHEN Rong, SHI Dishi, BAO Shujing, LIN Tuo, ZHOU Zhi. The discovery of Carboniferous shale gas in Qianziye-1 well of Qianan (southern Guizhou) depression[J]. Geology in China, 2017, 44(6): 1253-1254.
    [10]
    覃英伦, 张家政, 王玉芳, 康海霞, 李娟, 张子亚, 薛宗安, 张云枭. 广西桂中坳陷(桂融页1井)探获石炭系鹿寨组页岩气[J]. 中国地质, 2021, 48(2):667-668. doi: 10.12029/gc20210225

    QIN Yinglun, ZHANG Jiazheng, WANG Yufang, KANG Haixia, LI Juan, ZHANG Ziya, XUE Zong'an, ZHANG Yunxiao. Discovery of shale gas by Guirongye-1 well within Carboniferous Luzhai Formation in Guizhong depression, Guangxi[J]. Geology in China, 2021, 48(2): 667-668. doi: 10.12029/gc20210225
    [11]
    周雁, 朱东亚, 孟庆强, 张殿伟, 沃玉进. 桂中盆地页岩气地质条件及潜力分析[J]. 成都理工大学学报(自然科学版), 2014, 41(5):529-537.

    ZHOU Yan, ZHU Dongya, MENG Qingqiang, ZHANG Dianwei, WO Yujin. Geological conditions and exploration potential of shale gas in central Guangxi basin, China[J].Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(5): 529-537.
    [12]
    罗胜元, 王传尚, 彭中勤. 桂中坳陷下石炭统鹿寨组页岩气研究[J]. 华南地质与矿产, 2016, 32(2):180-190.

    LUO Shengyuan, WANG Chuanshang, PENG Zhongqin. Shale gas research of Luzhai Formation, Low Carboniferous in Guizhong depression[J]. Geology and Mineral Resources of South China, 2016, 32(2): 180-190.
    [13]
    陈粤, 黄文芳, 梁裕平, 邓宾. 广西鹿寨地区鹿寨组一段黑色页岩特征及沉积环境分析[J]. 矿产与地质, 2017, 31(3):605-612. doi: 10.3969/j.issn.1001-5663.2017.03.027

    CHEN Yue, HUANG Wenfang, LIANG Yuping, DENG Bin. Analysis on black shale feature and depositional environment of the first member of Luzhai Formation, Luzhai area of Guangxi[J]. Mineral Resources and Geology, 2017, 31(3): 605-612. doi: 10.3969/j.issn.1001-5663.2017.03.027
    [14]
    胡东风, 魏志红, 刘若冰, 范志伟, 韩京. 桂中坳陷下石炭统黑色页岩发育特征及页岩气勘探潜力[J]. 天然气工业, 2018, 38(10):28-37. doi: 10.3787/j.issn.1000-0976.2018.10.004

    HU Dongfeng, WEI Zhihong, LIU Ruobing, FAN Zhiwei, HAN Jing. Development characteristics and shale gas exploration potential of the Lower Carboniferous black shale in the Guizhong depression[J]. Natural Gas Industry, 2018, 38(10): 28-37. doi: 10.3787/j.issn.1000-0976.2018.10.004
    [15]
    周雯, 姜振学, 仇恒远, 金晓春, 王瑞湖, 岑文攀, 唐相路, 李鑫, 王国臻, 曹香妮, 孙玥. 桂中坳陷下石炭统鹿寨组页岩气成藏条件和有利区预测[J]. 石油学报, 2019, 40(7):798-812. doi: 10.7623/syxb201907004

    ZHOU Wen, JIANG Zhenxue, QIU Hengyuan, JIN Xiaochun, WANG Ruihu, CEN Wenpan, TANG Xianglu, LI Xin, WANG Guozhen, CAO Xiangni, SUN Yue. Shale gas accumulation conditions and prediction of favorable areas for the Lower Carboniferous Luzhai Formation in Guizhong depression[J]. Acta Petrolei Sinica, 2019, 40(7): 798-812. doi: 10.7623/syxb201907004
    [16]
    覃英伦, 雷雨, 蒋恕, 张仁, 张鲁川, 岑文攀, 卢炳雄. 桂中坳陷北部下石炭统鹿寨组一段页岩气成藏条件与资源潜力评价[J]. 石油科学通报, 2022, 7(2):139-154.

    QIN Yinglun, LEI Yu, JIANG Shu, ZHANG Ren, ZHANG Luchuan, CEN Wenpan, LU Bingxiong. Shale gas accumulation conditions and resource potential evaluation of member 1 of the Lower Carboniferous Luzhai Formation in the northern Guizhong depression[J]. Petroleum Science Bulletin, 2022, 7(2): 139-154.
    [17]
    陶金雨, 胡宗全, 申宝剑, 潘安阳, 李楚雄, 王瑞湖, 张美玲. 滇黔桂盆地桂中坳陷下石炭统台槽相页岩沉积特征与沉积模式[J]. 石油与天然气地质, 2022, 43(2):365-377. doi: 10.11743/ogg20220210

    TAO Jinyu, HU Zongquan, SHEN Baojian, PAN Anyang, LI Chuxiong, WANG Ruihu, ZHANG Meiling. Sedimentary characteristics and model of platform-trough shale in the Lower Carboniferous, Guizhong depression, Dianqiangui basin[J]. Oil & Gas Geology, 2022, 43(2): 365-377. doi: 10.11743/ogg20220210
    [18]
    淡永, 卢炳雄, 梁彬, 张庆玉, 李景瑞. 中国南方古生界碳酸盐岩发育对页岩气成藏和开发控制问题[J]. 中国岩溶, 2018, 37(3):343-350. doi: 10.11932/karst20180304

    DAN Yong, LU Bingxiong, LIANG Bin, ZHANG Qingyu, LI Jingrui. Effects of Paleozoic carbonate rock on shale gas accumulation and exploitation in Southern China[J]. Carsologica Sinica, 2018, 37(3): 343-350. doi: 10.11932/karst20180304
    [19]
    白辰阳. 济阳坳陷纹层碳酸盐岩成因及其对页岩油富集的指示意义[D]. 北京:中国地质大学(北京), 2019.

    BAI Chenyang. The genesis of laminar carbonates from Jiyang sub-basin and their implicate for shale oil accumulation[D]. Beijing: China University of Geosciences (Beijing), 2019.
    [20]
    滕建彬. 东营凹陷页岩油储层中方解石的成因及证据[J]. 油气地质与采收率, 2020, 27(2):18-25.

    TENG Jianbin. Origin and evidence of calcite in shale oil reservoir of Dongying sag[J]. Petroleum Geology and Recovery Efficiency, 27(2): 18-25.
    [21]
    郭苠恒, 金振奎, 赵建华, 崔学敏, 王金艺. 四川盆地龙马溪组页岩中碳酸盐矿物形成机制[J]. 科学技术与工程, 2019, 19(18):79-85 doi: 10.3969/j.issn.1671-1815.2019.18.011

    GUO Qiheng, JIN Zhenkui, ZHAO Jianhua, CUI Xuemin, WANG Jinyi. Origin of carbonate minerals in organic matter-rich shale of Longmaxi Formation in the Sichuan basin[J]. Science Technology and Engineering, 2019, 19(18): 79-85. doi: 10.3969/j.issn.1671-1815.2019.18.011
    [22]
    郭芪恒, 金振奎, 耿一凯, 赵建华, 常睿, 崔学敏, 王金艺. 四川盆地龙马溪组页岩中碳酸盐矿物特征及对储集性能的影响[J]天然气地球科学, 2019, 30(5):616-625.

    GUO Qiheng, JIN Zhenkui, GENG Yikai, ZHAO Jianhua, CHANG Rui, CUI Xuemin, WANG Jinyi. The characteristics of carbonate minerals in the Longmaxi Formation gas shale and its impact on the reservoir performance in the Sichuan basin[J]. Natural Gas Geoscience, 2019, 30(5): 616-625.
    [23]
    吴国干, 姚根顺, 徐政语, 郭庆新, 陈子炓. 桂中坳陷改造期构造样式及其成因[J]. 海相油气地质, 2009, 14(1):33-40. doi: 10.3969/j.issn.1672-9854.2009.01.005

    WU Guogan, YAO Genshun, XU Zhengyu, GUO Qingxin, CHEN Ziliao. Structural patterns and origin of tectonic reformation in Guizhong depression[J]. Marine Origin Petroleum Geology, 2009, 14(1): 33-40. doi: 10.3969/j.issn.1672-9854.2009.01.005
    [24]
    白忠峰. 桂中坳陷构造特征及其与油气关系[D]. 北京:中国地质大学, 2006.

    BAI Zhongfeng. Structural characteristics and the relation with the petroleum and gas in Guizhong depression[D]. Beijing: China University of Geosciences, 2006.
    [25]
    楼章华, 尚长健, 姚根顺, 陈子炓, 金爱民. 桂中坳陷及周缘海相地层油气保存条件[J]. 石油学报, 2011, 32(3):432-441. doi: 10.7623/syxb201103009

    LOU Zhanghua, SHANG Changjian, YAO Genshun, CHEN Ziliao, JIN Aimin. Hydrocarbon preservation conditions in marine strata of the Guizhong depression and its margin[J]. Acta Petrolei Sinica, 2011, 32(3): 432-441. doi: 10.7623/syxb201103009
    [26]
    黄思静. 碳酸盐矿物的阴极发光性与其Fe, Mn含量的关系[J]. 矿物岩石, 1992, 12(4):74-79.

    HUANG Sijing. Relationship between cathodoluminescence and concentration of iron and manganese in carbonate minerals[J]. Mineralogy and Petrology, 1992, 12(4): 74-79.
    [27]
    Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin, Germany: Springer, 2004.
    [28]
    董红琪, 张庆玉, 梁嘉鹏, 淡永. 广西环江凹陷深部岩溶缝洞充填物碳氧同位素特征及古环境意义[J]. 中国岩溶, 2022, 41(5):838-846, 837. doi: 10.11932/karst20220512

    DONG Hongqi, ZHANG Qingyu, LIANG Jiapeng, DAN Yong. Carbon and oxygen isotope characteristics and paleoenvironmental significance of deep karst fracture-cave fillings in Huanjiang sag, Guangxi[J]. Carsologica Sinica, 2022, 41(5): 838-846, 837. doi: 10.11932/karst20220512
    [29]
    张正红, 淡永, 梁彬, 张庆玉, 李景瑞, 郝彦珍. 塔中Ⅱ区鹰山组岩溶缝洞充填物碳氧同位素特征及环境意义[J]. 中国岩溶, 2015, 34(2):159-164. doi: 10.11932/karst20150209

    ZHANG Zhenghong, DAN Yong, LIANG Bin, ZHANG Qingyu, LI Jingrui, HAO Yanzhen. Characteristics of oxygen and carbon isotopes of karst fissure-cave fillings in the Yingshan Formation, Tazhong Ⅱ area, Tarim basin and their implications for environment[J]. Carsologica Sinica, 2015, 34(2): 159-164. doi: 10.11932/karst20150209
    [30]
    黄思静. 上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J]. 地质学报, 1997, 71(1):45-53.

    HUANG Sijing. A sudy on carbon and strontium isotopes of Late Paleozoic carbonate rocks in the upper Yangtze platform[J]. Acta Geologica Sinica, 1997, 71(1): 45-53.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (27) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return