Citation: | SHI Hai, JIA Zhilei, BAI Mingzhou, ZHANG Ye, SUN Zibing. Dynamic evolution characteristics of ground collapse of covered karst based on particle flow[J]. CARSOLOGICA SINICA, 2024, 43(5): 1110-1120. doi: 10.11932/karst20240509 |
[1] |
宋章, 王科, 蒋良文, 王茂靖. 岩溶区铁路勘察防治技术研究现状及发展趋势[J]. 高速铁路技术, 2018, 9(5):38-43.
SONG Zhang, WANG Ke, JIANG Liangwen, WANG Maojing. Research status and developing trends of reconnaissance and control technology of railway in karst area[J]. High Speed Railway Technology, 2018, 9(5): 38-43.
|
[2] |
Bai Haibo, Ma Dan, Chen Zhanqing. Mechanical behavior of groundwater seepage in karst collapse pillars[J]. Engineering Geology, 2013, 164: 101-106.
|
[3] |
高军. 高速铁路岩溶地质路基设计与整治技术[M]. 武汉:中国地质出版社, 2014.
|
[4] |
唐万春, 许模, 于贺艳. 武广客运专线英德段岩溶塌发育规律研究[J]. 地质与勘探, 2011, 47(4):699-704.
TANG Wanchun, XU Mo, YU Heyan. Study on karst collapse developing regularity of the Yingde section on the Wuhan-Guangzhou passenger special line[J]. Geology and Exploration, 2011, 47(4): 699-704.
|
[5] |
蒋小珍, 雷明堂, 管振德. 单层土体结构岩溶土洞的形成机理[J]. 中国岩溶, 2012, 31(4):426-432.
JIANG Xiaozhen, LEI Mingtang, GUAN Zhende. Formation mechanism of karst soil-void in single-layer soil structure condition[J]. Carsologica Sinica, 2012, 31(4): 426-432.
|
[6] |
蒙彦, 雷明堂. 岩溶塌陷研究现状及趋势分析[J]. 中国岩溶, 2019, 38(3):411-417.
MENG Yan, LEI Mingtang. Analysis of situation and trend of sinkhole collapse[J]. Carsologica Sinica, 2019, 38(3): 411-417.
|
[7] |
时刚, 王宇虓, 武天仪, 刘忠玉. 交通荷载下城市路面塌陷问题的试验研究[J]. 地下空间与工程学报, 2020, 16(4):1202-1209.
SHI Gang, WANG Yuxiao, WU Tianyi, LIU Zhongyu. Model experiments on ground collapse under traffic roads[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(4): 1202-1209.
|
[8] |
罗小杰, 沈建. 我国岩溶地面塌陷研究进展与展望[J]. 中国岩溶, 2018, 37(1):101-111.
LUO Xiaojie, SHEN Jian. Research progress and prospect of karst ground collapse in China[J]. Carsologica Sinica, 2018, 37(1): 101-111.
|
[9] |
Shi H, Bai M Z, Xing S C. Mechanics parameter optimization and evaluation of curtain grouting material in deep, water-rich karst tunnels[J]. Advances in Materials Science and Engineering, 2017, 2017: 1853951.
|
[10] |
Huang Zhen, Zhao Kui, Li Xiaozhao, Zhong Wen, Wu Yun. Numerical characterization of groundwater flow and fracture induced water inrush in tunnels[J]. Tunneling and Underground Space Technology, 2021, 116(9): 104119.
|
[11] |
Shi H, Li Q M, Zhang Q L, Yu Y Z, Xing Y J, Yu K. Mechanism of shallow soil cave-type karst collapse induced by water inrush in underground engineering construction[J]. Journal of Performance of Constructed Facilities, 2020, 34(1): 04019091. doi: 10.1061/(ASCE)CF.1943-5509.0001353
|
[12] |
白明洲, 陈云, 师海. 山岭隧道施工诱发地下水位下降环境风险评价[J]. 铁道工程学报, 2016, 33(1):5-10, 15.
BAI Mingzhou, CHEN Yun, SHI Hai. Environmental risk assessment of underground water level falling induced by construction in mountain tunnel[J]. Journal of Railway Engineering Society, 2016, 33(1): 5-10, 15.
|
[13] |
罗小杰, 罗程. 岩溶地面塌陷三机理理论及其应用[J]. 中国岩溶, 2021, 40(2):171-188.
LUO Xiaojie, LUO Cheng. Three-Mechanism Theory (TMT) of karst ground collapse and its application[J]. Carsologica Sinica, 2021, 40(2): 171-188.
|
[14] |
吴亚楠. 泰安市城区—旧县水源地岩溶塌陷演化过程分析[J]. 中国岩溶, 2017, 36(1):94-100.
WU Ya'nan. Analysis of karst collapse development in Tai'an–Jiuxian water source area[J]. Carsologica Sinica, 2017, 36(1): 94-100.
|
[15] |
王滨, 贺可强. 岩溶塌陷临界土洞的极限平衡高度公式[J]. 岩土力学, 2006(3):458-462.
WANG Bin, HE Keqiang. Study on limit equilibrium height expression of critical soil cave of karst collapse[J]. Rock and Soil Mechanics, 2006(3): 458-462.
|
[16] |
雷明堂, 蒋小珍, 李瑜. 岩溶塌陷模型试验:以武昌为例[J]. 地质灾害与环境保护, 1993, 4(2):39-44.
|
[17] |
吴庆华, 张伟, 刘煜, 崔皓东. 基于物理模型试验的岩溶塌陷定量研究[J]. 长江科学院院报, 2018, 35(3):52-58.
WU Qinghua, ZHANG Wei, LIU Yu, CUI Haodong. Quantifying the process of karst collapse by a physical model[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(3): 52-58.
|
[18] |
马荣和, 许汉华, 赵毅然. 个旧市木登硐村岩溶场地稳定性数值模拟[J]. 中国水运(下半月), 2019, 19(10):104-106.
|
[19] |
陈冬琴, 唐仲华, 陈锐. 基于水动力-力学耦合方法的岩溶塌陷预测[J]. 安全与环境工程, 2016, 23(4):26-32.
CHEN Dongqin, TANG Zhonghua, CHEN Rui. Prediction of karst collapse based on hydrodynamic-mechanical coupling method[J]. Safety and Environmental Engineering, 2016, 23(4): 26-32.
|
[20] |
贾龙, 蒙彦, 管振德. 岩溶土洞演化及其数值模拟分析[J]. 中国岩溶, 2014, 33(3):294-298.
JIA Long, MENG Yan, GUAN Zhende. Evolution and numerical simulation of a karst soil cave[J]. Carsologica Sinica, 2014, 33(3): 294-298.
|
[21] |
于林弘, 颜嘉良, 于晓静, 扈胜涛. 基于FLAC3D的岩溶土洞演化及数值模拟分析[J]. 地下水, 2020, 42(4):55-57.
YU Linhong, YAN Jialiang, YU Xiaojing, HU Shengtao. Evolution and numerical simulation of karst caves based on FLAC3D[J]. Ground Water, 2020, 42(4): 55-57.
|
[22] |
石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[J]. 岩土力学, 2018, 39(Suppl.2):36-39.
SHI Chong, ZHANG Qiang, WANG Shengnian. Particle flow (PFC5.0) numerical simulation technology and its application[J]. Rock and Soil Mechanics, 2018, 39(Suppl.2): 36-39.
|
[23] |
何树江. 基于颗粒流的灰岩细观力学参数标定方法及其敏感性分析[D]. 济南:山东大学, 2018.
HE Shujiang. Calibration method and sensitivity analysis of micromechanic parameters for limestone based on particle flow[D]. Jinan: Shandong University, 2018.
|
[24] |
周建, 张映钱, 方亿刚, 刘宇. 水位变动及降雨入渗联合作用对岩溶地面塌陷的影响分析[J]. 水利与建筑工程学报, 2016, 14(1):218-222.
ZHOU Jian, ZHANG Yingqian, FANG Yigang, LIU Yu. Analysis of joint action of water level fluctuation and rainfall on the influence of karst ground collapse[J]. Journal of Water Resources and Architectural Engineering, 2016, 14(1): 218-222.
|
[25] |
姚玉相. 基于离散单元法的高填黄土减载明洞土拱效应细观数值模拟研究[D]. 兰州:兰州交通大学, 2020.
YAO Yuxiang. Analysis on meso-mechanism of soil arching for unloading structure of high-filled cut-and-cover tunnel based on DEM[D]. Lanzhou: Lanzhou Jiaotong University, 2020.
|