• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 43 Issue 4
Oct.  2024
Turn off MathJax
Article Contents
YANG Chen, BI Benteng, ZHOU Lixin. Design and implementation of karst geological data management and sharing system[J]. CARSOLOGICA SINICA, 2024, 43(4): 982-990. doi: 10.11932/karst20240414
Citation: YANG Chen, BI Benteng, ZHOU Lixin. Design and implementation of karst geological data management and sharing system[J]. CARSOLOGICA SINICA, 2024, 43(4): 982-990. doi: 10.11932/karst20240414

Design and implementation of karst geological data management and sharing system

doi: 10.11932/karst20240414
  • Received Date: 2023-03-01
  • Accepted Date: 2024-01-09
  • Rev Recd Date: 2023-06-13
  • Distributed in almost all provinces, karst areas in China cover approximately one-third of the national land area. Therefore, scientific research in the field of karst is one of the hotspots of geological studies. Since its establishment, the Karst Geological Research Institute has conducted hydrogeological surveys, environmental geological surveys, karst subsidence, ecological environment, geological relics, oil and gas resources, karst landscapes, and other investigations in karst areas. This institute has completed over 1,500 scientific research projects of the Ministry of Science and Technology, the National Natural Science Foundation of China, the Ministry of Land and Resources, the Guangxi Science and Technology Department, and other departments, as well as technical service projects in local economic construction, with over 100,000 archives and data. These long-term accumulated geological data and scientific and technological achievements are a giant treasure containing meaningful and valuable knowledge and rules for us to develop. In order to tap its potential value, it is necessary for us to integrate and realize resource sharing services, improve data accessibility, break down various barriers to data utilization, and establish an integrated data resource management system. We should improve the utilization value of various data resources, and classify and organize electronic resources on a large scale and in a standardized way. We should also unify scheduling and resource management, and realize the classification, retrieval, download, and use of various data resources. Because by doing so, we can provide data support for researchers and technicians in the field of karst research and survey through improving their efficiency in data utilization.Taking SQL Server as the relational database and ArcGIS Server as the spatial map service engine, the data layer of the service system for karst geological data management has been developed by open-source technology frameworks such as ASP NET CORE 6.0 MVC framework, C#, JavaScript, HTML language, integrated WebGIS technology, Echart, jieba word segmentation, etc. The main functional modules include data statistics, data uploading, comprehensive table query module, directory query based on word segmentation technology, one map module for karst geological data, and modules of map service, map sheet conversion, borrowing management, user management, etc. based on ArcGIS JS.The data statistics module displays the quantity statistics results of various data categories in the system. In order to visually display the data, the bar chart and line chart drawing functions of open-source framework have been used to design a set of visual interfaces, with the data category as the horizontal axis and the data quantity as the vertical axis. This module facilitates users to quickly understand the quantity of various karst geological data.The comprehensive table query module of geological data has been developed based on open-source tables. By feat of powerful interaction and capabilities of displaying various geological data information to users that DataTables has, this module can display various information on geological data to users, and provide functions such as fuzzy retrieval, advanced retrieval, sorting, and data export. According to their needs, users can obtain data by selecting different attribute sorting, setting the numbers of pages and multi-attribute joint query conditions, etc. Through multi-attribute conditional joint query, the data query range can be narrowed down, and the query results can be accurately obtained, solving the problem of large data retrieval.The directory query module can realize the retrieval of geological data based on the content input by users. This module decomposes the query statement input by users, queries word by word to improve the query accuracy, and facilitates users to obtain the required data. Based on the results of word segmentation query, users can further filter data by data category, scale, and administrative region, and the keywords searched are highlighted in the query results. Users can click on the title to enter the page for data details.With the use of spatial information on geological data, the one map module for karst geological data can realize the map spatial retrieval of various geological data, based on spatial topology. Users can choose to query data categories and scales, and obtain data information through various methods such as inputting map sheet numbers, dragging boxes, and polygon queries. The map displays the location of the data, and the list on the right displays the name of the data. If users click on the spatial position of the data on the map or the name of the data in the query results list, the data information window will display for users to enter the page for data details.The map service module can realize the online viewing and attribute query of professional map elements. Users can select the professional geological map layer to be queried according to their needs, switch between vector maps, remote sensing images, terrain, and other base maps, view the legend, adjust the layer transparency, and use point selection, line selection, and surface selection to query attribute information.These modules use various ways to display the spatial, temporal, related attributes, and other metadata information of karst geological data to users, realizing the informationization of geological data management services and improving the efficiency of data query and access.

     

  • loading
  • [1]
    蒋忠诚, 覃小群, 曹建华, 蒋小珍, 何师意, 罗为群. 中国岩溶作用产生的大气CO2碳汇的分区计算[J]. 中国岩溶, 2011, 30(4):363-367.

    JIANG Zhongcheng, QIN Xiaoqun, CAO Jianhua, JIANG Xiaozhen, HE Shiyi, LUO Weiqun. Calculation of atmospheric CO2 sink formed in karst progresses of the karst divided regions in China[J]. Carsologica Sinica, 2011, 30(4): 363-367.
    [2]
    杨辰, 毕奔腾, 周立新. 基于知识图谱的岩溶知识发现系统建设[J]. 中国岩溶, 2021, 40(3):548-554.

    YANG Chen, BI Benteng, ZHOU Lixin. Construction of a karst knowledge discovery system based on knowledge graph[J]. Carsologica Sinica, 2021, 40(3): 548-554
    [3]
    韦延兰, 李文莉, 周立新, 毕雪丽. 岩溶水文地质环境地质信息管理系统构建与实现[J]. 中国岩溶, 2018, 37(1):146-153.

    WEI Yanlan, LI Wenli, ZHOU Lixin, BI Xueli. Construction and application of geological information management system in karst hydrogeological environment[J]. Carsologica Sinica, 2018, 37(1): 146-153.
    [4]
    徐正国, 徐华龙. 基于多源异构数据的宁煤公司煤矿协同调度平台[J]. 煤矿安全, 2021, 52(12):172-176. doi: 10.13347/j.cnki.mkaq.2021.12.029

    XU Zhengguo, XU Hualong. Coal mine collaborative scheduling platform of Ningxia Coal Industry Company based on multi-source heterogeneous data[J]. Safety in Coal Mines, 2021, 52(12): 172-176. doi: 10.13347/j.cnki.mkaq.2021.12.029
    [5]
    陈殿称, 卜宪海, 阳凡林, 云天宇, 艾波. 海底地形数据组织与可视化选取技术[J]. 海洋通报, 2022, 41(2):140-146. doi: 10.11840/j.issn.1001-6392.2022.02.003

    CHEN Dianchen, BU Xianhai, YANG Fanlin, YUN Tianyu, AI Bo. Organization and visual selection technologies for marine terrain data[J]. Marine Science Bulletin, 2022, 41(2): 140-146. doi: 10.11840/j.issn.1001-6392.2022.02.003
    [6]
    汪艳梅. 专业档案馆信息化建设特色与成效:以内蒙古地质档案馆为例[J]. 档案与建设, 2020(7):57-58,61.

    WANG Yanmei. Characteristics and effectiveness of informationization construction in professional archives: Taking Inner Mongolia geological archives as an example[J]. Archives & Construction, 2020(7): 57-58, 61
    [7]
    王瑞, 于晓霞, 叶敏, 梁生康, 杨燕群, 韦志国, 聂婕, 魏志强, 王修林. 面向渤海生态环境的数据库管理系统设计与实现[J]. 中国海洋大学学报:自然科学版, 2022, 52(8):150-156.

    WANG Rui, YU Xiaoxia, YE Min, LIANG Shengkang, YANG Yanqun, WEI Zhiguo, NIE Jie, WEI Zhiqiang, WANG Xiulin. Design and implementation of database management system for the Bohai Sea ecological environment[J]. Periodical of Ocean University of China, 2022, 52(8): 150-156.
    [8]
    陈思红, 丁华, 杨琨. 云平台环境下的采煤机设计数据汇交系统[J]. 机械设计与制造, 2022(382):189-191, 195. doi: 10.19356/j.cnki.1001-3997.2022.12.029

    CHEN Sihong, DING Hua, YANG Kun. Collection system of shearer design data under cloud platform environment[J]. Machinery Design & Manufacture, 2022(382): 189-191, 195. doi: 10.19356/j.cnki.1001-3997.2022.12.029
    [9]
    路文娟, 李成名, 孙伟. 利用NewMap API实现Web地图的地理数据可视化[J]. 测绘科学, 2019, 44(9):171-175, 190.

    LU Wenjuan, LI Chengming, SUN Wei. Based on the NewMap API Web front-end geographic data visualization[J]. Science of Surveying and Mapping, 2019, 44(9): 171-175, 190.
    [10]
    侯建民, 郭凯, 崔满丰, 翟颖, 马秀丹. 基于可视化技术的地震信息服务系统设计与实现[J]. 中国地震, 2022, 38(3): 574-584.

    HOU Jianmin, GUO Kai, CUI Manfeng, ZHAI Ying, MA Xiudan. Design and implementation of earthquake information service system based on visualization technology[J]. Earthquake Research in China, 2022, 38(3): 574-584.
    [11]
    罗勇, 付红云. 空间和时间维度地震目录展示系统设计[J]. 测绘通报, 2020(519):141-144.

    LUO Yong, FU Hongyun. Design of space and time dimension seismic catalog display system[J]. Bulletin of Surveying and Mapping, 2020(519): 141-144.
    [12]
    杨丽丽, 王振鹏, 罗君, 赵岩岩, 李万万, 毕蓓. 基于Android的新疆棉田导航系统设计[J]. 农业机械学报, 2019, 50(Suppl.1):57-61.

    YANG Lili, WANG Zhenpeng, LUO Jun, ZHAO Yanyan, LI Wanwan, BI Bei. Design and implementation of Xinjiang farmland navigation system based on Android development[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(Suppl.1): 57-61.
    [13]
    周浩, 赵修彦. 基于ArcGIS JavaScript API的物业全覆盖管理信息系统设计与实现[J]. 测绘与空间地理信息, 2018, 41(11):160-162.

    ZHOU Hao, ZHAO Xiuyan. Design and implementation of property coverage information management system based on ArcGIS JavaScript API[J]. Geomatics & Spatial Information Technology, 2018, 41(11): 160-162.
    [14]
    魏佳楠, 吴勇, 林华剑, 龚祎垄, 宋昀, 傅俊豪. 基于WebGIS的自然资源“一张图”管理信息系统设计与实现[J]. 计算机应用与软件, 2020, 37(9):20-26.

    WEI Jia'nan, WU Yong, LIN Huajian, GONG Yilong, SONG Yun, FU Junhao. Design and implementation of "one map" management information system for natural resources based on WebGIS[J]. Computer Applications and Software, 2020, 37(9): 20-26.
    [15]
    李宇霞, 孙永奇, 闫茹, 朱卫国. 基于CNN图像识别与语义可靠性的路径搜索方法[J]. 计算机工程, 2021, 47(1):255-263, 274.

    LI Yuxia, SUN Yongqi, YAN Ru, ZHU Weiguo. Path search method based on CNN image recognition and semantic reliability[J]. Computer Engineering, 2021, 47(1): 255-263, 274.
    [16]
    潘杰, 杨超宇. 基于数据挖掘方法的瓦斯事故调查报告关键因素分析[J]. 哈尔滨商业大学学报(自然科学版), 2022, 38(3):293-299.

    PAN Jie, YANG Chaoyu. Analysis on key factors of gas accident investigation report based on data mining method[J]. Journal of Harbin University of Commerce: Natural Sciences Edition, 2022, 38(3): 293-299.
    [17]
    邢玲, 程兵. 基于结巴分词的领域自适应分词方法研究[J]. 计算机仿真, 2023, 40(4):310-316, 503. doi: 10.3969/j.issn.1006-9348.2023.04.061

    XING Ling, CHENG Bing. Research on domain adaptive word segmentation method based on Jieba word segmentation[J]. Computer Simulation, 2023, 40(4): 310-316, 503. doi: 10.3969/j.issn.1006-9348.2023.04.061
    [18]
    GB/T 13989-2012. 国家基本比例尺地形图分幅和编号[S].

    GB/T 13989-2012. Division and numbering of national basic scale topographic maps[S].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (22) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return