Citation: | LUO Qukan, CAO Jianhua, ZHONG Liang, BAI Bing, WANG Qigang, LIAO Hongwei, ZONG Keqing, QIN Hanlian. Research advance for uranium isotope as a quantitative proxy for paleo-oceans anoxic or oxic environment[J]. CARSOLOGICA SINICA, 2024, 43(4): 957-968. doi: 10.11932/karst20240412 |
[1] |
Kaiho K, Kajiwara Y, Tazaki K, et al. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: Their decrease, subsequent warming, and recovery[J]. Palaeoceanography, 1999, 14(4): 511-524.
|
[2] |
Isozaki Y. Permian-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea[J]. Science, 1997, 276: 235-238. doi: 10.1126/science.276.5310.235
|
[3] |
Bratton J F, Berry W B N, Morrow J R. Anoxia predates Frasnian-Famennian boundary mass extinction horizon in the Great Basin, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154: 275-292. doi: 10.1016/S0031-0182(99)00116-9
|
[4] |
Turgeon S C, Brumsack H J. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of Central Italy[J]. Chemical Geology, 2006, 234: 321-339. doi: 10.1016/j.chemgeo.2006.05.008
|
[5] |
黄永建, 王成善, 顾健. 白垩纪大洋缺氧事件:研究进展与未来展望[J]. 地质学报, 2008, 82(1):21-30. doi: 10.3321/j.issn:0001-5717.2008.01.003
HUANG Yongjian, WANG Chengshan, GU Jian. Cretaceous Oceanic Anoxic Events: Research progress and forthcoming prospects[J]. Acta Geologica Sinica, 2008, 82(1): 21-30. doi: 10.3321/j.issn:0001-5717.2008.01.003
|
[6] |
陈曦, 郭会芳, 姚翰威, 韩凯博, 汪恒慧. 白垩纪大洋缺氧事件OAE2期间碳循环扰动的过程与机制[J]. 科学通报, 2022, 67(15):1677-1688.
CHEN Xi, GUO Huifang, YAO Hanwei, HAN Kaibo, WANG Henghui. Processes and forcing mechanisms of the carbon cycle perturbation during Cretaceous Oceanic Anoxic Event 2[J]. Chinese Science Bulletin, 2022, 67(15): 1677-1688.
|
[7] |
常华进, 储雪蕾, 冯连君, 黄晶, 张启锐. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1):91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011
CHANG Huajin, CHU Xuelei, FENG Lianjun, HUANG Jing, ZHANG Qirui. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011
|
[8] |
Clarkson M O, Stirling C H, Jenkynsb H C, et al. Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 2918-2923.
|
[9] |
Jenkyns H C. Geochemistry of Oceanic Anoxic Events[J]. Geochemistry Geophysics Geosystems, 2010, 11(3): Q03004.
|
[10] |
Francois R. A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, British Columbia, Canada[J]. Marine Geology, 1988, 83(1/2/3/4): 285-308.
|
[11] |
Russell A D, Morford J L. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, British Columbia[J]. Marine Geology, 2001, 174(1/2/3/4): 341-354.
|
[12] |
Algeo T J. Can marine anoxic events draw down the trace element inventory of seawater?[J]. Geology, 2004, 32: 1057-1060.
|
[13] |
Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67-88.
|
[14] |
Piper D Z, Perkins R B. A modern vs. Permian black shale: The hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 2004, 206(3/4): 177-197.
|
[15] |
Morse J W, Luther G W III. Chemical influences on trace metal-sulfide interactions in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20): 3373-3378.
|
[16] |
Grosjean E, Adam P, Connan J, Albrecht P. Effects of weathering on nickel and vanadyl porphyrins of a Lower Toarcian shale of the Paris basin[J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 789-804. doi: 10.1016/S0016-7037(03)00496-4
|
[17] |
Wanty R B, Goldhaber M B. Thermodynamics and kinetics of reactions involving vanadium in natural systems: Accumulation of vanadium in sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 1992, 56 (4): 1471-1483.
|
[18] |
Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63 (11/12): 1735-1750.
|
[19] |
Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: An overview[J]. Geological Society, London, Spec Publications, 1991, 58: 1-24. doi: 10.1144/GSL.SP.1991.058.01.01
|
[20] |
Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A.[J]. Chemical Geology, 1992, 99: 65-82. doi: 10.1016/0009-2541(92)90031-Y
|
[21] |
Bryn Jones, David A C Manning. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111: 111-129. doi: 10.1016/0009-2541(94)90085-X
|
[22] |
Wignall P B. Black Shale[M]. Oxford: Claredon Press, 1994.
|
[23] |
周炼, 苏洁, 黄俊华, 颜佳新, 解习农, 高山, 戴梦宁, 腾格尔. 判识缺氧事件的地球化学新标志—钼同位素[J]. 中国科学:地球科学, 2011, 41(3):309-319.
|
[24] |
尚墨翰, 汤冬杰, 史晓颖, 魏昊明, 刘安琪. I/(Ca+Mg)作为指示碳酸盐沉积氧化还原条件的重要指标:研究进展与问题评述[J]. 古地理学报, 2018, 20(4):651-664. doi: 10.7605/gdlxb.2018.04.047
SHANG Mohan, TANG Dongjie, SHI Xiaoying, WEI Haoming, LIU Anqi. I/(Ca+Mg) as an important redox proxy for carbonate sedimentary environments: Progress and problems[J]. Journal of Palaeogeography, 2018, 20(4): 651-664. doi: 10.7605/gdlxb.2018.04.047
|
[25] |
张俊鹏, 李超, 张元动. 早古生代海洋缺氧事件的地质记录与背景机制[J]. 科学通报, 2022, 67(15):1644-1659.
ZHANG Junpeng, LI Chao, ZHANG Yuandong. Geological evidences and mechanisms for oceanic anoxic events during the Early Paleozoic[J]. Chinese Science Bulletin, 2022, 67(15): 1644-1659.
|
[26] |
Kabanov P, Hauck T E, Gouwy S A, Grasby S E, Boon A v d. Oceanic anoxic events, marine photic-zone euxinia, and controversy of sea-level fluctuations during the Middle-Late Devonian[J]. Earth-Science Reviews, 2023, 241: 104415. doi: 10.1016/j.earscirev.2023.104415
|
[27] |
李聪颖, 吴思璠. 大洋缺氧事件金属稳定同位素研究进展[J]. 地球科学进展, 2022, 37(11):1127-1140. doi: 10.11867/j.issn.1001-8166.2022.085
LI Congying, WU Sifan. Advances in research on stable metal isotopes in Oceanic Anoxic Events[J]. Advances in Earth Science, 2022, 37(11): 1127-1140. doi: 10.11867/j.issn.1001-8166.2022.085
|
[28] |
Dickson A J. A molybdenum-isotope perspective on Phanerozoic deoxygenation events[J]. Nature Geoscience, 2017, 10: 721-726.
|
[29] |
Pearce C R, Cohen A S, Coe A L, Burton K W. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic[J]. Geology, 2008, 36(3): 231-234. doi: 10.1130/G24446A.1
|
[30] |
王欢, 姚军明, 李杰. 钼同位素地球化学研究进展及其在成矿作用研究中的应用潜力[J]. 地球化学, 2019, 48(3):213-229.
WANG Huan, YAO Junming, LI Jie. A review of progress in molybdenum isotope geochemistry and itspotential application in mineralization research[J]. Geochimica, 2019, 48(3): 213-229.
|
[31] |
Ostrander C M, Owens J D, Nielsen S G. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2:~94 Ma)[J]. Science Advances, 2017, 3: e1701020.
|
[32] |
Weyer S, Anbar A D, Gerdes A, Gordon G W, Algeo T J, Boyle E A. Natural fractionation of 238U/235U[J]. Geochimica et Cosmochimica Acta, 2008, 72: 345-359.
|
[33] |
徐林刚. 238U/235U分馏及其地质应用[J]. 矿床地质, 2014, 33(3):497-510.
XU Lingang. 238U/235U isotope fractionation in nature and its geological applications[J]. Mineral Deposits, 2014, 33(3): 497-510.
|
[34] |
Dunk R M, Mills R A, Jenkins W J. A reevaluation of the oceanic uranium budget for the Holocene[J]. Chemical Geology, 2002, 190: 45-67.
|
[35] |
Romaniello S J, Herrmann A D, Anbar A D. Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: Assessing a novel paleoredox proxy[J]. Chemical Geology, 2013, 362: 305-316.
|
[36] |
Tissot F L H, Dauphas N. Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia[J]. Geochimica et Cosmochimica Acta, 2015, 167: 113-143.
|
[37] |
Lau K V, Maher K, Altiner D, et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 2360-2365.
|
[38] |
Zhang F F, Algeo T J, Romaniello S J, et al. Congruent Permian-Triassic δ238U records at Panthalassic and Tethyan sites: Confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy[J]. Geology, 2018, 46(4): 327-330.
|
[39] |
Cheng K, Elrick M, Romaniello S J. Early Mississipian ocean anoxia triggered organic carbon burial and late Paleozoic cooling: Evidence from uranium isotopes recorded in marine limestone[J]. Geology, 2020, 48(4): 363-367.
|
[40] |
Stirling C H, Andersen M B, Potter E K, Halliday A N. Low-temperature isotopic fractionation of uranium[J]. Earth and Planetary Science Letters, 2007, 264: 208-225.
|
[41] |
Andersen M B, Romaniello S, Vance D, Little S H, Herdman R, Lyons T W. A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox[J]. Earth and Planetary Science Letters, 2014, 400: 184-194.
|
[42] |
Chen X M, Romaniello S J, Herrmann A D, Wasylenki L E, Anbar A D. Uranium isotope fractionation during coprecipitation with aragonite and calcite[J]. Geochimica et Cosmochimica Acta, 2016, 188: 189-207.
|
[43] |
Chen X M, Romaniello S J, Hermann A D, Samankassou E, Anbar A D. Biological effects on uranium isotope fractionation (238U/235U) in primary biogenic carbonates[J]. Geochimica et Cosmochimica Acta, 2018, 240: 1-10.
|
[44] |
Tissot F L H, Chen C, Go B M, et al. Controls of eustasy and diagenesis on the 238U/235U of carbonates and evolution of the seawater (234U/238U) during the last 1.4 Myr[J]. Geochimica et Cosmochimica Acta, 2018, 242: 233-265.
|
[45] |
Brennecka G A, Herrmann A D, Algeo T J, Anbar A D. Rapid expansion of oceanic anoxia immediately before the end Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 17631-17634.
|
[46] |
Dahl T W, Boyle R A, Canfield D E, Connelly J N, Gill B C, Lenton T M, Bizzarro M. Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event[J]. Earth and Planetary Science Letters, 2014, 401: 313-326.
|
[47] |
Dahl T W, Connelly J N, Kouchinsky A, Gill B C, Månsson S F, Bizzarro M. Reorganisation of Earth's biogeochemical cycles briefly oxygenated the oceans 520 Myr ago[J]. Geochemical Perspective Letters, 2017, 3(2): 210-220.
|
[48] |
Elrick M, Polyak V, Algeo T J, et al. Globalocean redox variation during the middle late Permian through Early Triassic based on uranium isotope and Th/U trends of marine carbonates[J]. Geology, 2017, 45: 163-166.
|
[49] |
Gilleaudeau G J, Romaniello S J, Luo G M, et al. Uranium isotope evidence for limited euxinia in mid-Proterozoic oceans[J]. Earth and Planetary Science letters, 2019, 521: 150-157.
|
[50] |
Zhang F, Lenton T M, Rey A, et al. Uranium isotopes in marine carbonates as a global ocean paleoredox proxy: A critical review[J]. Geochimica et Cosmochimica Acta, 2020, 287: 27-49.
|
[51] |
Andersen M B, Stirling C H, Weyer S. Uranium isotope fractionation[J]. Reviews in Mineralogy & Geochemistry, 2017, 82: 799-850.
|
[52] |
Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63: 1735-1750.
|
[53] |
Andersen M B, Vance D, Morford J L, et al. Closing in on the marine 238U/235U budget[J]. Chemical Geology, 2016, 420: 11-22.
|
[54] |
Holmden C, Amini M, Francois R. Uranium isotope fractionation in Saanich Inlet: A modern analog study of a paleoredox tracer[J]. Geochimica et Cosmochimica Acta, 2015, 153: 202-215.
|
[55] |
Rolison J M, Stirling C H, Middag R, et al. Uranium stable isotope fractionation in the Black Sea: Modern calibration of the 238U/235U paleo-redox proxy[J]. Geochimica et Cosmochimica Acta, 2017, 203: 69-88.
|
[56] |
Zhang F F, Xiao S H, Kendall B, et al. Extensive marine anoxia during the terminal Ediacaran Period[J]. Science Advances, 2018, 4: eaan8983.
|
[57] |
Goto K T, Anbar A D, Gordon G W, et al. Uranium isotope systematics of ferromanganese crusts in the Pacific Ocean: Implications for the marine 238U/235U isotope system[J]. Geochimica et Cosmochimica Acta, 2014, 146: 43-58.
|
[58] |
Wang X L, Planavsky N J, Reinhard C T, Hein J R, Johnson T M. A Cenozoic Seawater redox record derived from 238U/235U in ferromanganese crusts[J]. American Journal of Science, 2016, 316(1): 64-83.
|
[59] |
Zhang F, Dahl T W, Lenton T M, et al. Extensive marine anoxia associated with the Late Devonian Hangenberg Crisis[J]. Earth and Planetary Science Letters, 2020, 533: 115976.
|
[60] |
Helly J J, Levin L A. Global distribution of naturally occurring marine hypoxia on continental margins[J]. Deep Sea Research Part I-Oceanographic Research Papers, 2004, 51(9): 1159-1168.
|
[61] |
Montoya-Pino C, Weyer S, Anbar A D, et al. Global enhancement of ocean anoxia during Oceanic Anoxic Event 2: A quantitative approach using U isotopes[J]. Geology, 2010, 38(4): 315-318.
|
[62] |
Maher K, Steefel C I, DePaolo D J, et al. The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70(2): 337-363.
|
[63] |
Payne J L, Kump L. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations[J]. Earth and Planetary Science Letters, 2007, 256(1-2): 264-277.
|
[64] |
Winguth C, Winguth A M E. Simulating Permian-Triassic oceanic anoxia distribution: Implications for species extinction and recovery[J]. Geology, 2012, 40(2): 127-130.
|
[65] |
Burgess S D, Bowring S, Shen S Z. High-precision timeline for Earth's most severe extinction[J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3316-3321.
|
[66] |
Stylo M, Neubert N, Wang Y, et al. Uranium isotopes fingerprint biotic reduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18): 5619-5624.
|
[67] |
Noordmann J, Weyer S, Georg R B, et al. 238U/235U isotope ratios of crustal material, rivers and products of hydrothermal alteration: New insights on the oceanic U isotope mass balance[J]. Isotopes in Environmental and Health Studies, 2015, 18: 1-23.
|
[68] |
Reershemius T, Planavsky N J. What controls the duration and intensity of ocean anoxic events in the Paleozoic and the Mesozoic?[J]. Earth-Science Review, 2021, 221: 103787.
|
[69] |
Tostevin R, Clarkson M O, Gangl S, et al. Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans[J]. Earth and Planetary Science Letters, 2019, 506: 104-112. doi: 10.1016/j.jpgl.2018.10.045
|
[70] |
Wei G, Planvasky N J, Tarhan L G, et al. Marine redox fluctuation as a potential trigger for the Cambrian explosion[J]. Geology, 2018, 46: 587-590.
|
[71] |
Wei G, Planvasky N J, He T, et al. Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope records[J]. Earth-Science Reviews, 2021, 214: 103506.
|
[72] |
Dahl T W, Connelly J N, Kouchinsky A. Atmosphere−ocean oxygen and productivity dynamics during early animal radiations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19352-19361.
|
[73] |
Bartlett R, Elrick M, Wheeley J R, et al. Abrupt global-ocean anoxia during the Late Ordovician-early Silurian detected using uranium isotopes of marine carbonates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 5896-5901.
|
[74] |
White D A, Elrick M, Romaniello S, et al. Global seawater redox trends during the Late Devonian mass extinction detected using U isotopes of marine limestones[J]. Earth and Planetary Science Letters, 2018, 503: 68-77.
|
[75] |
Zhang F F, Shen S Z, Cui Y, et al. Two distinct peisodes of marine anoxia during the Permian-Triassic crisis evidences by uranium isotopes in marine dolostones[J]. Geochimica et Cosmochimica Acta, 2020, 287: 165-179.
|
[76] |
Jost A B, Bachan A, Schootbrugge B, et al. Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 3093-3108. doi: 10.1002/2017GC006941
|
[77] |
Krause A J, Mills B J W, Zhang S, et al. Stepwise oxygenation of the Paleozoic atmosphere[J]. Nature Communications, 2018, 9: 4081. doi: 10.1038/s41467-018-06383-y
|
[78] |
Lenton T M, Daines S J, Mills B J W. COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time[J]. Earth-Science Reviews, 2018, 178: 1-28. doi: 10.1016/j.earscirev.2017.12.004
|
[79] |
Glasspool I J, Scott A C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal[J]. Nature Geoscience, 2010, 3: 627-630.
|
[80] |
Sperling E A, Wolock C J, Morgan A S, et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation[J]. Nature, 2015, 523 (7561): 451-454.
|
[81] |
Belcher C M, McElwain J C. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic[J]. Science, 2008, 321: 1197-1201. doi: 10.1126/science.1160978
|
[82] |
Glasspool I J, Scott A C, Waltham D, et al. The impact of fire on the Late Paleozoic Earth system[J]. Frontiers in Plant Science, 2015, 6: 1-13.
|
[83] |
Canfield D E. A new model for Proterozoic ocean chemistry[J]. Nature, 1998, 396: 450-453. doi: 10.1038/24839
|
[84] |
Canfield D E. In: Holland H D, Turekian, K K (Eds.). Treatise on Geochemistry[M]. New York: Elsevier, 2014: 197−216.
|