• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
ZENG Jie, PAN Xiaodong, REN Kun, LIU Wei, PENG Cong, ZHENG Zhijie. Hydrogeological conditions of karst leakage and locating of leakage channels in Biyun lake, Guizhou[J]. CARSOLOGICA SINICA, 2024, 43(1): 201-208. doi: 10.11932/karst20240101
Citation: ZENG Jie, PAN Xiaodong, REN Kun, LIU Wei, PENG Cong, ZHENG Zhijie. Hydrogeological conditions of karst leakage and locating of leakage channels in Biyun lake, Guizhou[J]. CARSOLOGICA SINICA, 2024, 43(1): 201-208. doi: 10.11932/karst20240101

Hydrogeological conditions of karst leakage and locating of leakage channels in Biyun lake, Guizhou

doi: 10.11932/karst20240101
  • Received Date: 2023-01-01
    Available Online: 2024-03-21
  • China is a country with the widest distribution area and the most complete karst development type in the world, and its karst area accounts for about one third of China's territorial area. Finding leakage channels of lakes and reservoirs in karst areas has been an urgent problem for the lake and reservoir construction and the control of leakage disasters. In this study, Biyun lake in Zhijin county of Guizhou Province was taken as an example to analyze the hydrogeological conditions around the lake in response to the problem of watershed shrinkage. Furthermore, with the combination of tracer tests and geophysical detection methods, the hydrogeological conditions of leakage in Biyun lake and the location of the main leakage channel were determined and verified by drilling test results.The results of the tracer test show that Moion concentration increased significantly 32 hours after the tracer was put into Biyun lake, and the value peaked 68 hours after the setting of tracer, and then decreased. The tracer results confirm that Biyun lake flows along the karst leakage zone in the north-east direction after seeping through the sinkhole, and is finally discharged at the outlet of the Babu underground river. In the results of high-power charging method, the potential curve and gradient curve show a relatively maximum potential value and a relatively minimum value of potential gradient at the measuring point of 540 m, where the main leakage channel of Biyun lake was inferred to be located and a large-scale karst cave is likely developed in the vicinity. The rest of the anomalous sections of the curves is inferred to be a strong karst development zone, which can provide conditions for the storage and transport of groundwater. A relatively strong reflective surface of electromagnetic wave shown by geological radar exploration at the depth of about 20–28 m is inferred to be a contact surface between mudstone and greystone. A strong reflection surface of relative electromagnetic wave at the depth of 36–48 m is inferred to be a strong karst development zone. These results are basically in line with the location of the strong karst leakage zone detected by high-power charging method. The borehole drilled at the measuring point of 540 m has verified the strong karst leakage zone inferred from the physical exploration. Based on the correction of the data from the borehole, the parameter of geological radar, V, is taken to be 0.060 m·ns−1 which is applicable to the study area.The study results indicate that Biyun lake belongs to the oblique tectonic basin, where leakage points and underground river pipes are mainly developed close to the axis of the Babu compound oblique, along the lithological interface of three sections of greystone and the second section of the mudstone of Jialingjiang Group. The mudstone constitutes a water separating plate of the karst leakage zone. After lake water seeps along the zone, it flows northwest, and is discharged in the end at the outlet of the Babu underground river. In addition, the leakage of Biyun lake is mainly of the karst pipeline type. The karst leakage zone is located at the measuring point of 540 m, with a 40-meter-deep of karst pipeline; therefore, the leakage section is relatively narrow, and it is feasible to plug the leakage by grouting. The drilling test results confirm the reliability of the technical method used in karst areas, which is combined by hydrogeological investigation, tracer test and physical exploration, because this method can well determine the direction of the leakage channel and the location of the leakage zone, and thus providing guidance on the leakage control of lakes or reservoirs in karst areas.

     

  • [1]
    袁道先, 蔡桂鸿. 岩溶环境学[M]. 重庆: 重庆出版社, 1988, 20-30.
    [2]
    卢耀如, 张凤娥, 刘长礼, 童国榜, 张云. 中国典型地区岩溶水资源及其生态水文特性[J]. 地球学报, 2006, 27(5):393-402. doi: 10.3321/j.issn:1006-3021.2006.05.002

    LU Yaoru, ZHANG Feng'e, LIU Changli, TONG Guobang, ZHANG Yun. Karst water resources in typical areas of China and their eco-hydrological characteristics[J]. Acta Geoscientica Sinica, 2006, 27(5): 393-402. doi: 10.3321/j.issn:1006-3021.2006.05.002
    [3]
    邹成杰等编著. 水利水电岩溶工程地质[M]. 北京: 水利电力出版社, 1994.
    [4]
    杨杰, 郑成成, 江德军, 胡德秀. 病险水库理论分析研究进展[J]. 水科学进展, 2014, 25(1):148-154.

    YANG Jie, ZHENG Chengcheng, JIANG Dejun, HU Dexiu. Research advances in risk assessment and enforcement of unsafe reservoirs[J]. Advances in Water Science, 2014, 25(1): 148-154.
    [5]
    任爱武, 柯柏荣, 程建设, 孙平, 段庆伟, 邵宇. 岩溶地区水库渗漏原因分析与无损检测验证[J]. 水利学报, 2014, 45(Suppl.2):119-124, 129.

    REN Aiwu, KE Bairong, CHENG Jianshe, SUN Ping, DUAN Qingwei, SHAO Yu. Analysis of the causes for the leakage of reservoir in karst area and nondestructive testing verification[J]. Journal of Hydraulic Engineering, 2014, 45(Suppl.2): 119-124, 129.
    [6]
    卢耀如. 喀斯特发育机理与发展工程建设效应研究方向[J]. 地球学报, 2016, 37(4):419-432.

    LU Yaoru. Karst development mechanism and research directions of developing engineering construction effect[J]. Acta Geoscientica Sinica, 2016, 37(4): 419-432.
    [7]
    李利蓉. 贵州某水库水文地质条件对水库渗漏的影响分析[J]. 河南水利与南水北调, 2019, 48(1):31-32.

    LI Lirong. Analysis on the influence of hydrogeological condition on reservoir seepage: A case study[J]. Henan Water Resources and South-to-North Water Diversion, 2019, 48(1): 31-32.
    [8]
    杜朋召, 雷春荣, 高平. 东庄水库碳酸盐岩库段岩溶控制因素与发育规律研究[J]. 华北水利水电大学学报(自然科学版), 2018, 39(3):88-92.

    DU Pengzhao, LEI Chunrong, GAO Ping. Research on controlling factors and development rules of karst in carbonate rocks of Dongzhuang reservoir[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2018, 39(3): 88-92.
    [9]
    钱海涛, 王思敬, 严福章, 胡波. 黔中水利枢纽一期工程区岩溶发育模式及水库防渗研究[J]. 水文地质工程地质, 2008(4):51-57. doi: 10.3969/j.issn.1000-3665.2008.04.013

    QIAN Haitao, WANG Sijing, YAN Fuzhang, HU Bo. Karst development models and reservoir anti-seepage design in a hydro-junction construction site in Qianzhong district[J]. Hydrogeology & Engineering Geology, 2008(4): 51-57. doi: 10.3969/j.issn.1000-3665.2008.04.013
    [10]
    吕路, 杨军耀, 秦嘉楠. 汾河三期蓄水工程人工湖渗漏对太原市浅层地下水影响的数值模拟[J]. 水电能源科学, 2017, 35(1):89-92, 208.

    LYU Lu, YANG Junyao, QIN Jianan. Numerical simulation of impact of artificial lake leakage on shallow groundwater in Taiyuan in third stage of Fenhe river water storage project[J]. Water Resources and Power, 2017, 35(1): 89-92, 208.
    [11]
    王思思, 任朝阳, 苏毅. 基于Visual MODFLOW的景观湖防渗方式评估及优化设计[J]. 环境工程, 2019, 37(7):70-76.

    WANG Sisi, REN Zhaoyang, SU Yi. Evaluation and design optimization of landscape lake antiseepage schemes based on Visual MODFLOW[J]. Environmental Engineering, 2019, 37(7): 70-76.
    [12]
    戴前伟, 程敏波, 雷轶. 伪随机流场法在水库渗漏检测中的异常特征正演分析[J]. 地球物理学进展, 2022, 37(2):810-816.

    DAI Qianwei, CHENG Minbo, LEI yi. Forward modeling analysis of abnormal characteristics of pseudorandom flow field method in reservoir leakage detection[J]. Progress in Geophysics, 2022, 37(2): 810-816.
    [13]
    罗锐恒, 刘天云, 胡顺强, 潘晓东, 刘伟. 地球物理技术在岩溶水库渗漏通道识别中的应用[J]. 人民长江, 2022, 53(7):128-134.

    LUO Ruiheng, LIU Tianyun, HU Shunqiang, PAN Xiaodong, LIU Wei. Application of geophysical technology in leakage channel identification of reservoir in karst area[J]. Yangtze River, 2022, 53(7): 128-134.
    [14]
    韩凯, 陈玉玲, 陈贻祥, 甘伏平, 郑智杰, 张伟. 岩溶病害水库的渗漏通道探测方法:以广西全州县洛潭水库为例[J]. 水力发电学报, 2015, 34(11):116-125.

    HAN Kai, CHEN Yuling, CHEN Yixiang, GAN Fuping, ZHENG Zhijie, ZHANG Wei. Detection method of leakage passages in karst disease reservoirs: A case study of Luotan reservoir in Quanzhou county of Guangxi[J]. Journal of Hydroelectric Engineering, 2015, 34(11): 116-125.
    [15]
    陈建生, 董海洲, 陈亮. 采用环境同位素方法研究北江大堤石角段基岩渗漏通道[J]. 水科学进展, 2003(1):57-61. doi: 10.3321/j.issn:1001-6791.2003.01.010

    CHEN Jiansheng, DONG Haizhou, CHEN Liang. Application of the environment isotope method to study on the leakage passage in foundation of Beijiang Dyke Shijiao section[J]. Advances in Water Science, 2003(1): 57-61. doi: 10.3321/j.issn:1001-6791.2003.01.010
    [16]
    袁瑞强, 宋献方, 王鹏, 张应华, 王仕琴, 唐常源. 白洋淀渗漏对周边地下水的影响[J]. 水科学进展, 2012, 23(6):751-756. doi: 10.14042/j.cnki.32.1309.2012.06.017

    YUAN Ruiqiang, SONG Xianfang, WANG Peng, ZHANG Yinghua, WANG Shiqin, TANG Changyuan. Impacts of percolation in Baiyangdian lake on groundwater[J]. Advances in Water Science, 2012, 23(6): 751-756. doi: 10.14042/j.cnki.32.1309.2012.06.017
    [17]
    代志宏, 朱银红, 卢鹏, 李正顺, 赵锡荣. 非典型隐伏岩溶发育特征及渗漏研究:以大雪山水库为例[J]. 桂林理工大学学报, 2021, 41(3):518-524.

    DAI Zhihong, ZHU Yinhong, LU Peng, LI Zhengshun, ZHAO Xirong. Development characteristics and leakage of atypical concealed karst: Taking Daxueshan reservoir as an example[J]. Journal of Guilin University of Technology, 2021, 41(3): 518-524.
    [18]
    罗小杰, 吴玉华. 江坪河水库库首右岸梅坪—曲溪河间地块岩溶发育特征与渗漏可能性分析[J]. 水文地质工程地质, 1995(3):47-51. doi: 10.16030/j.cnki.issn.1000-3665.1995.03.013
    [19]
    曾荣福, 郑克勋, 王钦权. 岩溶水库渗透破坏型渗漏勘察与评价[J]. 中国岩溶, 2023, 42(1): 119-127.

    ZENG Rongfu, ZHENG Kexun, WANG Qinquan. Investigation and evaluation of the leakage caused by seepage failure in karst reservoir[J]. Carsologica Sinica, 2023, 42(1): 119-127.
    [20]
    王少丽, 瞿兴业. 防渗渠道顶托渗漏量计算方法的理论探讨[J]. 水利学报, 2008, 39(4):476-482, 489.

    WANG Shaoli, QU Xingye. Analytical method for seepage calculation in canals with lining[J]. Journal of Hydraulic Engineering, 2008, 39(4): 476-482, 489.
  • Relative Articles

    [1]SONG Chen, PAN Xiaodong, LIU Tianyun, LUO Fei, ZENG Jie, PENG Cong, CHENG Ruirui, ZHANG Wenping. Analysis of karst leakage conditions and pipeline characteristics in the main blocked area of Yibasan reservoir, Yunnan[J]. CARSOLOGICA SINICA, 2024, 43(5): 1088-1098. doi: 10.11932/karst2024y033
    [2]WANG Yu. Problems and their countermeasures in a hydrogeological survey of karst areas in South China[J]. CARSOLOGICA SINICA, 2023, 42(4): 627-635. doi: 10.11932/karst20230401
    [3]LIU Yuanqing, ZHOU Le, WANG Xinfeng, LV Lin, LU Xiaohui, YU Kaining, ZHANG Weifeng. Hydrogeological structure model of the fault zone in the karst area of north China[J]. CARSOLOGICA SINICA, 2022, 41(6): 975-985. doi: 10.11932/karst20220609
    [4]ZHANG Hua, KANG Xiaobo, WANG Bo, CHAI Jinlong, ZHOU Cuiqiong, CAI Shuangle, HOU Xutao, HUANG Chenhui, PAN Xiaodong. Karst hydrogeological problems and countermeasures of a proposed railway in plateau slope area of southeast Yunnan[J]. CARSOLOGICA SINICA, 2022, 41(5): 718-727. doi: 10.11932/karst20220506
    [5]ZHANG Hua, KANG Xiaoli, PENG Shuhui, HUANG Zhao, GAO Yu, HUANG Qinhui, LIU Shaohua, LIU Tianlun. Hydrogeological evolution of typical moniliform karst wetland in the Yunnan-Guizhou Plateau[J]. CARSOLOGICA SINICA, 2022, 41(4): 532-541. doi: 10.11932/karst20220403
    [6]LIU Tianyun, LUO Ruiheng, HU Shunqiang, ZHAO Yongbin, PAN Xiaodong, LIU Wei. Hydrogeological conditions of karst leakage and identification of pipeline location in Xiaohewei reservoir, Wenshan[J]. CARSOLOGICA SINICA, 2022, 41(1): 88-99. doi: 10.11932/karst20220104
    [7]CHENG Yang, WANG Yong, YANG Yanfang. Preliminary study on hydrogeological conditions of Ya’an-Linzhi section of Sichuan-Tibet railway[J]. CARSOLOGICA SINICA, 2020, 39(5): 753-761. doi: 10.11932/karst20200512
    [8]LIU Yuanqing, ZHOU Le, LI Wei, DING Peng, LYU Lin, MA Xuemei, MENG Shunxiang, DENG Qijun, LI Bo. Dissolution characteristics of limestone conglomerate in the Paleogene Zhujiagou formation in the central and southern mountainous area of Shandong Province and hydrogeological implications[J]. CARSOLOGICA SINICA, 2020, 39(3): 327-334. doi: 10.11932/karst2020y28
    [9]LYU Yaocheng, LI Yuqiang, ZHANG Furong, JU Guanghong. Karst features of the Lianhuatai hydropower station and engineering significance[J]. CARSOLOGICA SINICA, 2019, 38(4): 502-507. doi: 10.11932/karst20190405
    [10]TIAN Zutao, ZHANG Jun. Karst hydrogeology and risk assessment of the Huali tunnel[J]. CARSOLOGICA SINICA, 2019, 38(4): 552-558. doi: 10.11932/karst20190412
    [11]CAO Rui, RAN Yu, LYU Yuxiang, GUO Chuandao, LI Dehai, WANG Jia. Application of geophysical prospecting and hydrogeological analysis in borehole siting in the karst area:A case study of ZK3 well in Luojiaba, Qianjiang district[J]. CARSOLOGICA SINICA, 2018, 37(2): 280-285. doi: 10.11932/karst20180215
    [12]WEI Yanlan, LI Wenli, ZHOU Lixin, BI Xueli. Construction and application of geological information management system in karst hydrogeological environment[J]. CARSOLOGICA SINICA, 2018, 37(1): 146-153. doi: 10.11932/karst20180109
    [13]XIA Riyuan, ZOU Shengzhang, TANG Jiansheng, LIANG Bin, CAO Jianwen, LU Haiping. Technical key points of 1∶50,000 hydrogeological and environmental geology surveys in karst areas of South China[J]. CARSOLOGICA SINICA, 2017, 36(5): 599-608. doi: 10.11932/karst20170501
    [14]CAO Rui, Lyu Yuxiang, PEI Jianguo. Analysis on the hydrogeological influence of the Huangniya tunnel in Nanchuan district of Chongqing[J]. CARSOLOGICA SINICA, 2017, 36(5): 691-696. doi: 10.11932/karst2017y35
    [15]SUN Yin-hang, LIAN Jie, WU Yi. Geophysical prospecting techniques in discriminating the in filled water from mud in karst water-bearing media[J]. CARSOLOGICA SINICA, 2012, 31(4): 459-464. doi: 10.3969/j.issn.1001-4810.2012.04.016
    [16]WU Yi, SUN Yin-hang, LI Feng-zhe. The geophysical prospecting technique in different aquifer media in karst area, Southwest China[J]. CARSOLOGICA SINICA, 2011, 30(3): 278-284. doi: 10.3969/j.issn.1001-4810.2011.03.007
    [17]WANG Yu, YUAN Dao-xian, YANG Shi-yu. Geophysical Prospecting of Karst Water in Yunnan Province, China[J]. CARSOLOGICA SINICA, 2007, 26(2): 162-162.
    [18]WU Xiao-hua, DONG Hua-jun, ZHU Xiao-lin, JIANG Fu-hong. Karst leakage evaluation and seepage prevention treatmentfor artificial lake in karst area— A case study to Fengming lake in Zaozhuang, Shandong province[J]. CARSOLOGICA SINICA, 2007, 26(3): 219-225. doi: 10.3969/j.issn.1001-4810.2007.03.006
    [19]YI Lian-xing, ZHANG Zhi-gan, LI Meng-de, LI xue-zheng. ANALYSIS ON MONOCLINIC KARST AQUIFER AND ITS SEEPAGE CONDITION— A Case in the River Bend of Jiangpinghe Hydropower Station,Loushui River, Hubei Province[J]. CARSOLOGICA SINICA, 2006, 25(1): 29-34. doi: 10.3969/j.issn.1001-4810.2006.01.006
    [20]LIANG Xiao-ping, ZHU Zhi-wei, LIANG Bin, GUAN Bi-zhu, ZOU Sheng-zhang. PRELIMINARY ANALYSIS ON HYDROGEOCHEMICAL CHARACTERISTICS OF THE EPIKARST ZONE IN LUOTA, HUNAN[J]. CARSOLOGICA SINICA, 2003, 22(2): 103-109. doi: 10.3969/j.issn.1001-4810.2003.02.005
  • Cited by

    Periodical cited type(2)

    1. 王亚男,阮启林,李文涛,张涛,王铮,杨伟卫. 复杂地质构造条件下岩溶大水矿山既有阻水帷幕薄弱带探查技术——以鄂东南某矿山为例. 资源环境与工程. 2025(01): 51-59+68 .
    2. 符明俊,何阳,董秀军,邓博. 茂密植被山区岩溶漏斗遥感识别方法. 中国岩溶. 2025(01): 89-99 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-070102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.1 %FULLTEXT: 13.1 %META: 71.0 %META: 71.0 %PDF: 15.8 %PDF: 15.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.7 %其他: 6.7 %其他: 0.2 %其他: 0.2 %China: 0.2 %China: 0.2 %三明: 0.2 %三明: 0.2 %上海: 1.3 %上海: 1.3 %中卫: 4.9 %中卫: 4.9 %中山: 0.4 %中山: 0.4 %乌兰察布: 0.2 %乌兰察布: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %凉山: 0.2 %凉山: 0.2 %包头: 0.4 %包头: 0.4 %北京: 29.9 %北京: 29.9 %十堰: 0.4 %十堰: 0.4 %南宁: 0.9 %南宁: 0.9 %南昌: 0.7 %南昌: 0.7 %卢布尔雅那: 0.4 %卢布尔雅那: 0.4 %厦门: 0.2 %厦门: 0.2 %台州: 0.5 %台州: 0.5 %合肥: 0.5 %合肥: 0.5 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.7 %哈尔滨: 0.7 %唐山: 0.2 %唐山: 0.2 %喀什: 0.5 %喀什: 0.5 %大理: 0.4 %大理: 0.4 %天津: 0.2 %天津: 0.2 %太原: 0.2 %太原: 0.2 %娄底: 0.2 %娄底: 0.2 %宜宾: 0.2 %宜宾: 0.2 %宣城: 0.4 %宣城: 0.4 %山景城: 0.7 %山景城: 0.7 %崇左: 6.6 %崇左: 6.6 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %常州: 0.4 %常州: 0.4 %常德: 0.2 %常德: 0.2 %广州: 0.4 %广州: 0.4 %廊坊: 0.2 %廊坊: 0.2 %徐州: 0.4 %徐州: 0.4 %成都: 1.1 %成都: 1.1 %扬州: 0.5 %扬州: 0.5 %文山: 0.4 %文山: 0.4 %日照: 0.2 %日照: 0.2 %昆明: 2.4 %昆明: 2.4 %杭州: 0.7 %杭州: 0.7 %柳州: 0.2 %柳州: 0.2 %桂林: 0.2 %桂林: 0.2 %武汉: 1.3 %武汉: 1.3 %永州: 0.2 %永州: 0.2 %汕头: 0.2 %汕头: 0.2 %泰安: 0.2 %泰安: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.7 %济南: 0.7 %海东: 0.2 %海东: 0.2 %淄博: 0.4 %淄博: 0.4 %清远: 0.2 %清远: 0.2 %湘潭: 0.2 %湘潭: 0.2 %滁州: 0.2 %滁州: 0.2 %漯河: 1.6 %漯河: 1.6 %潍坊: 0.2 %潍坊: 0.2 %烟台: 0.2 %烟台: 0.2 %焦作: 0.2 %焦作: 0.2 %珠海: 3.5 %珠海: 3.5 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.4 %福州: 0.4 %秦皇岛: 0.2 %秦皇岛: 0.2 %红河: 0.2 %红河: 0.2 %纽约: 2.4 %纽约: 2.4 %绵阳: 0.2 %绵阳: 0.2 %聊城: 0.2 %聊城: 0.2 %芒廷维尤: 3.6 %芒廷维尤: 3.6 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %萍乡: 0.2 %萍乡: 0.2 %西宁: 5.6 %西宁: 5.6 %西安: 0.5 %西安: 0.5 %诺沃克: 0.5 %诺沃克: 0.5 %贵阳: 2.2 %贵阳: 2.2 %运城: 1.3 %运城: 1.3 %连云港: 0.2 %连云港: 0.2 %通化: 0.2 %通化: 0.2 %遵义: 0.5 %遵义: 0.5 %邵阳: 0.2 %邵阳: 0.2 %郑州: 0.4 %郑州: 0.4 %重庆: 3.1 %重庆: 3.1 %长春: 0.2 %长春: 0.2 %长沙: 0.7 %长沙: 0.7 %陇南: 0.2 %陇南: 0.2 %韶关: 0.2 %韶关: 0.2 %黔南: 0.4 %黔南: 0.4 %其他其他China三明上海中卫中山乌兰察布乌鲁木齐凉山包头北京十堰南宁南昌卢布尔雅那厦门台州合肥呼和浩特哈尔滨唐山喀什大理天津太原娄底宜宾宣城山景城崇左巴音郭楞常州常德广州廊坊徐州成都扬州文山日照昆明杭州柳州桂林武汉永州汕头泰安洛阳济南海东淄博清远湘潭滁州漯河潍坊烟台焦作珠海石家庄福州秦皇岛红河纽约绵阳聊城芒廷维尤芝加哥苏州萍乡西宁西安诺沃克贵阳运城连云港通化遵义邵阳郑州重庆长春长沙陇南韶关黔南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (389) PDF downloads(87) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return