• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 42 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
LI Hongming, SUN Weifeng, ZHANG Hongri, QIN Xianghui, FENG Jian, WEI Jianhai, LAN Sulian, ZHANG Chongyuan, SUN Dongsheng. Inversion of the fine in-situ stress field for deep-buried tunnel: A case study on the Jiangranshan tunnel of the Shuangjiang-Cangyuan express way in southwest Yunnan[J]. CARSOLOGICA SINICA, 2023, 42(6): 1247-1257. doi: 10.11932/karst2023y029
Citation: LI Hongming, SUN Weifeng, ZHANG Hongri, QIN Xianghui, FENG Jian, WEI Jianhai, LAN Sulian, ZHANG Chongyuan, SUN Dongsheng. Inversion of the fine in-situ stress field for deep-buried tunnel: A case study on the Jiangranshan tunnel of the Shuangjiang-Cangyuan express way in southwest Yunnan[J]. CARSOLOGICA SINICA, 2023, 42(6): 1247-1257. doi: 10.11932/karst2023y029

Inversion of the fine in-situ stress field for deep-buried tunnel: A case study on the Jiangranshan tunnel of the Shuangjiang-Cangyuan express way in southwest Yunnan

doi: 10.11932/karst2023y029
  • Received Date: 2022-12-10
    Available Online: 2023-12-28
  • Under complex geological conditions of fault system, stratum and terrain, an accurate inversion of the in-situ stress field is a challenging and hot issue in the study on engineering geology. Focusing on the accurate inversion of fine in-situ stress field for deep-buried tunnel under complex geological conditions, and the influence of major geological factors on the stress state, we took the Jiangranshan tunnel of the express way from Shuangjiang to Cangyuan in southwest Yunnan as a case to perform the study. We first established the fine geological model of the Jiangranshan tunnel area by integrating the fine DEM data and the geological survey data. Then, taking the measured in-situ stress data in the tunnel site and the measured GPS data of velocity field as the integrated constraints, we carried out the inversion of fine in-situ stress field in the engineering region of Jiangranshan tunnel. On the basis of the inversion results, we analyzed the characteristics of fine in-situ stress field in the tunnel site and the influence of main geological conditions on the current in-situ stress field. Finally, we estimated the engineering geological stability of the surrounding rock mass of the Jiangranshan tunnel. The results show that the simulated displacement velocity field in the Jiangranshan tunnel area is basically consistent with the GPS observation results, revealing that the inversion model adopted in this study can well reflect the current tectonic stress environment of the engineering region. The simulation results show that the level of the in-situ stress field in the western part of the study area is relatively high, while it is low in the eastern part. The direction of the maximum principal stress shows partial deflection in the study area. The influence of the nearly E-W-striking Xiaoheijiang fault—the largest fault in the study area—on the in-situ stress is that it causes the slight deflection of the direction of the maximum principal stress; however, it does not cause abrupt change of the in-situ stress magnitude. The secondary faults and topography show little effect on the in-situ stress field, which is limited to very small area and does not cause notable disturbance of the in-situ stress field. The results reveal that the maximum, intermediate, and minimum principal stresses along the tunnel mainly distribute in 7.47–27.23 MPa, 1.59–15.12 MPa, and 0.01–6.71 MPa, respectively, and does not show obviously abnormal characteristics. The engineering geological stability of the surrounding rock mass of the Jiangranshan tunnel is estimated by the stress intensity index (i.e., the ratio of the maximum tangential stress to the uniaxial compress strength of rock). The estimation results, which are determined by integrating the stress field simulation results and the mechanical properties of the typical rocks obtained from the laboratory tests, show that the stress intensity indexes of the Jiangranshan tunnel mainly range between 0.20–0.48. It indicates that the surrounding rock masses of the Jiangranshan tunnel are mainly in a stable state or in a slight rockburst risk under the current in-situ stress conditions. The conclusion can be drawn from the case study that under the complex geological conditions, the fine geological model suitable for the scale of engineering area can be established by using the fine DEM and actual fault and strata data, which can effectively reveal the characteristics of the in-situ stress field in engineering area and the influence of the main geological conditions. This study provides not only the profound understanding of the in-situ stress field of the Jiangranshan tunnel area, but also the implications for the fine inversion of in-situ stress field under complex geological conditions in Yunnan and other similar areas. In addition, this study can directly support the stability evaluation of the surrounding rock of the deep-buried Jiangranshan tunnel.

     

  • loading
  • [1]
    Scholz C H. The mechanics of earthquake and faulting[M]. Cambridge, UK: Cambridge University Press, 2002.
    [2]
    Diederichs M S, Kaiser P K, Eberhardt E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 785-812.
    [3]
    秦向辉, 张鹏, 丰成君, 孙炜锋, 谭成轩, 陈群策, 彭有如. 北京地区地应力测量与主要断裂稳定性分析[J]. 地球物理学报, 2014, 57(7):2165-2180.

    QIN Xianghui, ZHANG Peng, FENG Chengjun, SUN Weifeng, TAN Chengxuan, CHEN Qunce, PENG Youru. In-situ stress measurements and slip stability of major faults in Beijing region[J]. Chinese Journal of Geophysics, 2014, 57(7):2165-2180.
    [4]
    Hettema M. Analysis of mechanics of fault reactivation in depleting reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 129: 104290.
    [5]
    谭成轩, 孙炜锋, 孙叶, 王连捷. 地应力测量及其地下工程应用的思考[J]. 地质学报, 2006, 80(10):1627-1632. doi: 10.3321/j.issn:0001-5717.2006.10.018

    TAN Chengxuan, SUN Weifeng, SUN Ye, WANG Lianjie. A consideration on in-situ crustal stress measuring and its underground engineering application[J]. Acta Geologica Sinica, 2006, 80(10):1627-1632. doi: 10.3321/j.issn:0001-5717.2006.10.018
    [6]
    王成虎, 刘立鹏, 郭啓良, 侯砚和. 地应力测量数据分析对工程稳定性控制设计的意义[J]. 工程地质学报, 2008, 16(Suppl.1):377-383.

    WANG Chenghu, LIU Lipeng, GUO Qiliang, HOU Yanhe. One method to analyze the measured in-situ stress data and its significance to the project stability design[J]. Journal of Engineering Geology, 2008, 16(Suppl.1):377-383.
    [7]
    黄艺丹, 潘前, 姚令侃, 陈诺. 川藏铁路拉林段地应力特征及高地应力风险调控选线策略[J]. 工程地质学报, 2021, 29(2):375-382.

    HUANG Yidan, PAN Qian, YAO Lingkan, CHEN Nuo. Characteristics of measured stress and route selection strategy under high in-situ stress risk control along Lalin section of Sichuan-Tibet Railway[J]. Journal of Engineering Geology, 2021, 29(2):375-382.
    [8]
    黄小龙, 吴忠海, 吴坤罡. 滇西北弥渡地区主要断裂晚新生代发育特征及其动力学机制[J]. 地质力学学报, 2021, 27(6):913-927.

    HUANG Xiaolong, WU Zhonghai, WU Kungang. Late Cenozoic development characteristics and dynamic mechanism of the main faults in the Midu area, northwestern Yunnan[J]. Journal of Geomechanics, 2021, 27(6):913-927.
    [9]
    Zang A, Stephansson O. Stress field of the earth's crust[M]. New York, USA: Springer, 2010.
    [10]
    陈群策, 毛吉震, 侯砚和. 利用地应力实测数据谈论地形对地应力的影响[J]. 岩石力学与工程学报, 2004, 23(12):3990-3995.

    CHEN Qunce, MAO Jizhen, HOU Yanhe. Study on influence of topography on in-situ stress by interpretation of measurement data of in-situ stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(12):3990-3995.
    [11]
    谭成轩, 孙炜锋, 张春山, 吴树仁, 彭华, 孙叶. 深切峡谷地壳浅表层地应力状态变化分析[J]. 地球物理学进展, 2007, 22(4):1353-1359.

    TAN Chengxuan, SUN Weifeng, ZHANG Chunshan, WU Shuren, PENG Hua, SUN Ye. An analysis on variation of crustal stress at the shallow part of upper crust in deep cut valley region[J]. Progress in Geophysics, 2007, 22(4):1353-1359.
    [12]
    苏生瑞, 黄润秋, 王士天. 断裂构造对地应力场的影响及工程应用[M]. 北京: 科学出版社, 2002.
    [13]
    苏生瑞, 朱合华, 王士天, STEPHANSSON O. 岩石物理力学性质对断裂附近地应力场的影响[J]. 岩石力学与工程学报, 2003, 22(3):370-377. doi: 10.3321/j.issn:1000-6915.2003.03.006

    SU Shengrui, ZHU Hehua, WANG Shitian, STEPHASSON O. Effect of physical and mechanical properties of rocks on stress field in the vicinity of fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(3):370-377. doi: 10.3321/j.issn:1000-6915.2003.03.006
    [14]
    Heidbach O, Rajabi M, Cui Xiaofeng, Fuchs K, Müller B, Reinecker J, Reiter K, Tingay M, Wenzel F, Xie Furen, Ziegler M O, Zoback M L, Zoback M. The word stress map database release 2016: Crustal stress pattern across scales[J]. Tectonophysics, 2020, 74:484-498.
    [15]
    杨文采, 侯遵泽, 于常青. 滇西地壳三维密度结构及其大地构造含义[J]. 地球物理学报, 2015, 58(11):3902-3916. doi: 10.6038/cjg20151102

    YANG Wencai, HOU Zunze, YU Changqing. 3D crustal density of west Yunnan and its tectonic implications[J]. Chinese Journal of Geophysics, 2015, 58(11):3902-3916. doi: 10.6038/cjg20151102
    [16]
    Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between Indian and Asia[J]. Geological Society of London Special Publications, 1986, 19(1):113-157. doi: 10.1144/GSL.SP.1986.019.01.07
    [17]
    武永彩, 李昂, 唐红涛. 滇西北地区近年来应力场的数值模拟研究[J]. 大地测量与地球动力学, 2018, 38(12):1238-1240, 1279.

    WU Yongcai, LI Ang, TANG Hongtao. The numerical simulation of stress field in northwest Yunnan in recent years[J]. Journal of Geodesy and Geodynamics, 2018, 38(12):1238-1240, 1279.
    [18]
    洪敏, 张勇, 邵德盛, 王伶俐, 王岩. 云南地区近期地壳活动特征[J]. 地震研究, 2014, 37(10):367-372.

    HONG Min, ZHANG Yong, SHAO Desheng, WANG Lingli, WANG Yan. Recent tectonic activity features of Yunnan region[J]. Journal of Seismological Research, 2014, 37(10):367-372.
    [19]
    谢富仁, 陈群策, 崔效锋. 中国大陆地壳应力环境研究[M]. 北京: 地质出版社, 2003.

    XIE Furen, CHEN Qunce, CUI Xiaofeng. Crustal stress in China[M]. Beijing: Geology Press, 2003.
    [20]
    Herger T, Heidbach O, Reiter K, Giger S B, Marschall P. Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, Northern Switzerland[J]. Solid Earth, 2015, 6(2):533-552. doi: 10.5194/se-6-533-2015
    [21]
    张重远, 杜世回, 何满朝, 秦向辉, 李彬, 陈兴强, 陈群策, 孟文, 黄勇. 喜马拉雅东构造节西缘地应力特征及其对隧道围岩稳定性的影响[J]. 岩石力学与工程学报, 2022, 41(5):954-968.

    ZHANG Chongyuan, DU Shihui, HE Manchao, QIN Xianghui, LI Bin, CHEN Xingqiang, CHEN Qunce, MENG Weng, HUANG Yong. Characteristics of in-situ stresses on the western margin of the eastern Himalayan syntaxis and its influence on stability of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5):954-968.
    [22]
    徐正宣, 孟文, 郭长宝, 张鹏, 张广泽, 孙明乾, 陈群策, 陈宇. 川西折多山某深埋隧道地应力测量及其应用研究[J]. 现代地质, 2021, 36(1):114-125.

    XU Zhengxuan, MENG Weng, GUO Changbao, ZHANG Peng, ZHANG Guangze, SUN Mingqian, CHEN Qunce, CHEN Yu. In-situ stress measurement and its application of a deep-buried tunnel in Zheduo mountain, west Sichuan[J]. Geoscience, 2021, 36(1):114-125.
    [23]
    田朝阳, 兰恒星, 张宁, 许博闻. 某交通线路色季拉山隧道高地应力区岩爆风险定量预测研究[J]. 工程地质学报, 2022, 30(3):621-634.

    TIAN Chaoyang, LAN Hengxing, ZHANG Ning, XU Bowen. Quantitative prediction of rockburst risk in Sejila tunnel of one railway[J]. Journal of Engineering Geology, 2022, 30(3):621-634.
    [24]
    蒙伟, 何川, 张钧博, 周子寒, 汪波. 高地温高地应力下岩体初始地应力场反演分析[J]. 岩石力学与工程学报, 2020, 39(4):749-760.

    MENG Wei, HE Chuan, ZHANG Junbo, ZHOU Zihan, WANG Bo. Inverse analyses of the initial geo-stress field of rock masses under high geo-temperature and high geo-stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4):749-760.
    [25]
    Wang M, Shen Z K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geology Research: Solid Earth, 2020, 125:1-22.
    [26]
    盛书中, 胡晓辉, 王晓山, 万永革, 李红星, 李振月, 田宵, 王向滕, 张苏祥. 云南及邻区地壳应力场研究[J]. 地球物理学报, 2022, 65(9):3252-3267.

    SHENG Shuzhong, HU Xiaohui, WANG Xiaoshan, WAN Yongge, LI Hongxing, LI Zhenyue, TIAN Xiao, WANG Xiangteng, ZHANG Suxiang. Study on the crustal stress field of Yunnan and its adjacent areas[J]. Chinese Journal of Geophysics, 2022, 65(9):3252-3267.
    [27]
    Liu L, Zoback M D. The effect of topography on the state of stress in the crust: Application to the site of the Cajon Pass Scientific Drilling Project[J]. Journal of Geophysical Research, 1992, 97:5095-5100. doi: 10.1029/91JB01355
    [28]
    蒙伟, 何川, 汪波, 张钧博, 吴枋胤, 夏舞阳. 基于侧压系数的岩爆区初始地应力场二次反演分析[J]. 岩土力学, 2018, 39(11): 4191-4200.

    MENG Wei, HE Chuan, WANG Bo, ZHANG Junbo, WU Fangyin, XIA Wuyang. Two-stage back analysis of initial geostress field in rockburst area on lateral pressure coefficient[J]. Rock and Soil Mechanics, 2018, 39(11): 4191-4200.
    [29]
    付玉华, 王兴明, 袁海平. 构造应力场边界荷载反演的有限元逆逼近法[J]. 岩土力学, 2009, 30(6):1850-1855.

    FU Yuhua, WANG Xingming, YUAN Haiping. Finite element inverse analysis of boundary load for tectonic stress field[J]. Rock and Soil Mechanics, 2009, 30(6):1850-1855.
    [30]
    秦忠诚, 刘承论, 赵祉业, 李青海. 地形及构造应力影响下初始应力场的3D-FSM反演分析[J]. 岩土力学, 2008, 29(7):1848-1852.

    QIN Zhongcheng, LIU Chenglun, ZHAO Zhiye, LI Qinghai. Back analysis of initial ground stresses by 3D-FSM considering influence of terrain and tectonic stress[J]. Rock and Soil Mechanics, 2008, 29(7):1848-1852.
    [31]
    冯夏庭, 肖亚勋, 丰光亮, 姚志宾, 陈炳瑞, 杨成祥, 苏国韶. 岩爆孕育过程研究[J]. 岩石力学与工程学报, 2019, 38(4):649-673.

    FENG Xiating, XIAO Yaxun, FENG Guangliang, YAO Zhibin, CHEN Bingrui, YANG Chengxiang, SU Guoshao. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4):649-673.
    [32]
    姚瑞, 杨树新, 谢富仁, 崔效锋, 陆远忠, 许兆义. 青藏高原及周缘地壳浅层构造应力场量值特征分析[J]. 地球物理学报, 2017, 60(6):2147-2158. doi: 10.6038/cjg20170610

    YAO Rui, YANG Shuxin, XIE Furen, CUI Xiaofeng, LU Yuanzhong, XU Zhaoyi. Analysis on magnitude characteristics of the shallow crustal tectonic stress field in Qinghai–Tibet plateau and its adjacent region based on in-situ stress data[J]. Chinese Journal of Geophysics, 2017, 60(6):2147-2158. doi: 10.6038/cjg20170610
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (172) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return