Citation: | LENG Deming, SHI Wenbing, LI Hua, LIANG Feng. Numerical simulation on uniaxial compressive mechanical properties of karstified rock mass in epikarst zone[J]. CARSOLOGICA SINICA, 2023, 42(6): 1258-1269. doi: 10.11932/karst2023y015 |
[1] |
蒋忠诚, 裴建国, 夏日元, 张美良, 雷明堂. 我国“十一五”期间的岩溶研究进展与重要活动[J]. 中国岩溶, 2010, 29(4):349-354. doi: 10.3969/j.issn.1001-4810.2010.04.001
JIANG Zhongcheng, PEI Jianguo, XIA Riyuan, ZHANG Meiliang, LEI Mingtang. Progresses and important activities of karst research during the 11th Five-Year Plan in China[J]. Carsologica Sinica, 2010, 29(4):349-354. doi: 10.3969/j.issn.1001-4810.2010.04.001
|
[2] |
李大通, 罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983, 2(2):147-150.
LI Datong, LUO Yan. Measurement of carbonate rocks distribution area in China[J]. Carsologica Sinica, 1983, 2(2):147-150.
|
[3] |
蒋忠诚. 中国南方表层岩溶带的特征及形成机理[J]. 热带地理, 1998, 18(4):322-326. doi: 10.3969/j.issn.1001-5221.1998.04.007
JIANG Zhongcheng. Features of epikarst zone in South China and formation mechanism[J]. Tropical Geography, 1998, 18(4):322-326. doi: 10.3969/j.issn.1001-5221.1998.04.007
|
[4] |
彭韬, 周长生, 宁茂岐, 付磊, 戴德求, 王世杰. 基于探地雷达解译的喀斯特坡地表层岩溶带空间分布特征研究[J]. 第四纪研究, 2017, 37(6):1262-1270. doi: 10.11928/j.issn.1001-7410.2017.06.10
PENG Tao, ZHOU Changsheng, NING Maoqi, FU Lei, DAI Deqiu, WANG Shijie. Study on spatial distribution of epikarst zone on plateau karst slope based on ground-penetrating radar[J]. Quaternary Sciences, 2017, 37(6):1262-1270. doi: 10.11928/j.issn.1001-7410.2017.06.10
|
[5] |
杜尊龙. 强烈岩溶控制型高速滑坡形成机理研究: 以武隆鸡尾山滑坡为例[D]. 成都: 成都理工大学, 2016.
DU Zunlong. Study on formation mechanism of high-speed landslide controlled by intensively developed karst: A case study of cocktail mountain landslide in Wulong[D]. Chengdu: Chengdu University of Technology, 2016
|
[6] |
黄波林, 殷跃平, 李滨, 秦臻, 张鹏. 三峡工程库区岩溶岸坡岩体劣化及其灾变效应[J]. 水文地质工程地质, 2020, 47(4):51-61.
HUANG Bolin, YIN Yueping, LI Bin, QIN Zhen, ZHANG Peng. Rock mass deterioration and its catastrophic effect of karst bank slope in the Three Gorges Project Reservoir area[J]. Hydrogeology & Engineering Geology, 2020, 47(4):51-61.
|
[7] |
光耀华. 岩溶地区工程地质研究的若干新进展概述[J]. 中国岩溶, 1998, 17(4):70-75.
GUANG Yaohua. An introduction to the progress of the geologic engineering researches in karst regions[J]. Carsologica Sinica, 1998, 17(4):70-75.
|
[8] |
张社荣, 王枭华, 王超. 孔隙结构特征及发育程度对溶蚀岩体力学特性的影响[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(10):1018-1028.
ZHANG Sherong, WANG Xiaohua, WANG Chao. Effects of pore structure and its development degree on dissolution rock mechanical characteristics[J]. Journal of Tianjin University (Science and Technology), 2017, 50(10):1018-1028.
|
[9] |
朱雷, 王小群, 聂德新, 郑百录, 姚男. 基于随机模型溶蚀岩体强度参数研究[J]. 工程地质学报, 2014, 22(6):1034-1038.
ZHU Lei, WANG Xiaoqun, NIE Dexin, ZHENG Bailu, YAO Nan. Stochastic method based evaluation of corrosion rock strength parameters[J]. Journal of Engineering Geology, 2014, 22(6):1034-1038.
|
[10] |
张牧子, 孙永福, 宋玉鹏, 修宗祥, 赵晓龙, 胡光海. 单轴压缩条件下溶蚀礁灰岩细观变形破坏特征研究[J]. 计算力学学报, 2021, 38(2):222-229.
ZHANG Muzi, SUN Yongfu, SONG Yupeng, XIU Zongxiang, ZHAO Xiaolong, HU Guanghai. Study on the microstructure and failure characteristics of limestone in dissolution reef under uniaxial compression[J]. Chinese Journal of Computational Mechanics, 2021, 38(2):222-229.
|
[11] |
罗小杰. 武汉地区浅层岩溶发育特征与岩溶塌陷灾害防治[J]. 中国岩溶, 2013, 32(4):419-432.
LUO Xiaojie. Features of shallow karst development and control of karst collapse in Wuhan[J]. Carsologica Sinica, 2013, 32(4):419-432.
|
[12] |
曹贤发, 刘之葵, 李海玲. 西南岩溶区建筑地基溶蚀程度深度分布规律[J]. 桂林理工大学学报, 2016, 36(2):253-259. doi: 10.3969/j.issn.1674-9057.2016.02.009
CAO Xianfa, LIU Zhikui, LI Hailing. Dissolution distribution rules with depth at building ground in southwestern karst area, China[J]. Journal of Guilin University of Technology, 2016, 36(2):253-259. doi: 10.3969/j.issn.1674-9057.2016.02.009
|
[13] |
何珣, 何勇, 郭磊, 潘绪超, 庞春旭, 乔良, 涂建. 基于Flat-Joint接触模型的软化本构开发及其参数影响分析[J]. 岩石力学与工程学报, 2018, 37(10):2277-2287.
HE Xun, HE Yong, GUO Lei, PAN Xuchao, PANG Chunxu, QIAO Liang, TU Jian. Development of softening constitutive model based on Flat-Joint contact model and parametric analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10):2277-2287.
|
[14] |
Itasca Consulting Group. PFC 5.0 documentation[Z]. Minneapolis, USA: Itasca Consulting Group, 2014.
|
[15] |
王涛, 周炜波, 徐大朋, 曾俊. 基于光滑节理模型的岩体水力压裂数值模拟[J]. 武汉大学学报(工学版), 2016, 49(4): 500-508.
WANG Tao, ZHOU Weibo, XU Dapeng, ZENG Jun. Numerical simulation of hydraulic fracturing of rock mass based on smooth joint model[J]. Engineering Journal of Wuhan University, 2016, 49(4): 500-508.
|
[16] |
Chen P Y. Effects of microparameters on macroparameters of flat-jointed bonded-particle materials and suggestions on trial-and-error method[J]. Geotechnical and Geological Engineering, 2017, 35(2):663-677. doi: 10.1007/s10706-016-0132-5
|
[17] |
曹贤发, 刘玉康, 刘之葵, 张炳晖. 基于强溶蚀带特征的地基岩溶发育程度评价方法[J]. 中国岩溶, 2020, 39(4):577-583.
CAO Xianfa, LIU Yukang, LIU Zhikui, ZHANG Binghui. Evaluation method of development degree based on features of intense dissolution layer[J]. Carsologica Sinica, 2020, 39(4):577-583.
|
[18] |
Garcia Rios M, Luquot L, Soler J M, Cama J. Influence of the flow rate on dissolution and precipitation features during percolation of CO2-rich sulfate solutions through fractured limestone samples[J]. Chemical Geology, 2015, 414:95-108. doi: 10.1016/j.chemgeo.2015.09.005
|
[19] |
Ford D, Williams P D. Karst hydrogeology and geomorphology[M]. New York, USA: John Wiley & Sons, 2013.
|
[20] |
Williams P W. The role of the epikarst in karst and cave hydrogeology: A review[J]. International Journal of Speleology, 2008, 37(1):1-10. doi: 10.5038/1827-806X.37.1.1
|
[21] |
汤艳春, 周辉, 冯夏庭, 姚华彦. 单轴压缩条件下岩盐应力−溶解耦合效应的细观力学试验分析[J]. 岩石力学与工程学报, 2008(2):294-302. doi: 10.3321/j.issn:1000-6915.2008.02.010
TANG Yanchun, ZHOU Hui, FENG Xiating, YAO Huayan. Analysis of mesomechanical test of rock salt considering coupled stress-dissolving effecet under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(2):294-302. doi: 10.3321/j.issn:1000-6915.2008.02.010
|
[22] |
李庶林, 唐海燕. 不同加载条件下岩石材料破裂过程的声发射特性研究[J]. 岩土工程学报, 2010, 32(1):147-152.
LI Shulin, TANG Haiyan. Acoustic emission characteristics in failure process of rock under different uniaxial compressive loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1):147-152.
|
[23] |
刘海峰, 郑坤, 朱长歧, 孟庆山, 吴文娟. 基于应力−应变曲线的礁灰岩脆性特征评价[J]. 岩土力学, 2021, 42(3):673-680.
LIU Haifeng, ZHENG Kun, ZHU Changqi, MENG Qingshan, WU Wenjuan. Brittleness evaluation of coral reef limestone base on stress-strain curve[J]. Rock and Soil Mechanics, 2021, 42(3):673-680.
|
[24] |
郑坤. 珊瑚礁灰岩工程地质及声发射特性研究[D]. 南宁: 广西大学, 2019.
ZHENG Kun. Study on engineering geology and acoustic emission characteristics of coral reef limestone[D]. Nanning: Guangxi University, 2019
|
[25] |
Yang W, Zhang Q, Ranjith P G, Yu R, Luo R, Huang C, Wang G. A damage mechanical model applied to analysis of mechanical properties of jointed rock masses[J]. Tunnelling and Underground Space Technology, 2019, 84:113-128. doi: 10.1016/j.tust.2018.11.004
|
[26] |
Fakhimi A, Alavi Gharahbagh E. Discrete element analysis of the effect of pore size and pore distribution on the mechanical behavior of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1):77-85. doi: 10.1016/j.ijrmms.2010.08.007
|