• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 42 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
ZHANG Tao, ZUO Shuangying, SHEN Chunyong, ZHENG Kexun, CHEN Shiwan, ZHANG Qing, LEI Lin, WU Zongqin. Evaluation system for the suitability of reservoir construction for pumped storage and optimization of its site selection in karst depressions[J]. CARSOLOGICA SINICA, 2023, 42(6): 1161-1172. doi: 10.11932/karst20230603
Citation: ZHANG Tao, ZUO Shuangying, SHEN Chunyong, ZHENG Kexun, CHEN Shiwan, ZHANG Qing, LEI Lin, WU Zongqin. Evaluation system for the suitability of reservoir construction for pumped storage and optimization of its site selection in karst depressions[J]. CARSOLOGICA SINICA, 2023, 42(6): 1161-1172. doi: 10.11932/karst20230603

Evaluation system for the suitability of reservoir construction for pumped storage and optimization of its site selection in karst depressions

doi: 10.11932/karst20230603
  • Received Date: 2022-10-21
    Available Online: 2023-12-28
  • In the planning policy on modern energy system in China's "14th Five-Year Plan", it is proposed to accelerate the improvement of system for energy production, supply, storage and marketing, and to promote the large-scale and high-proportion development of renewable energy, so as to achieve the goal of "carbon peaking and carbon neutralization". Pumped storage is currently recognized as the most mature, reliable, clean and economical means of energy storage. However, the site selection is imminent in order to construct power stations for pumped storage. Taking Guizhou Province as an example, the current planning of site selection and the construction technology of power stations for pumped storage are seldom studied. Karst is distributed in more than 77% of Guizhou's land area, with the peak-cluster depression as the main geomorphological type. As a kind of natural negative terrain, the peak-cluster depression has hardly been excavated. But its excellent surrounding sealing, and wonderful geometric and engineering characteristics can save much investment in excavation support. Thus, the peak-cluster depression is an ideal place for building a reservoir. Taking the karst depression as a research object, this study focuses on the practical engineering problem of building a power station for pumped storage in the karst depression. The factors and their degrees affecting the suitability of reservoir construction in the depression are obviously different in different regions; therefore, some typical factors can only be selected as the evaluation indicators. These factors involve those having an important impact on the stability of the reservoir area, the leakage problem and the benefit of reservoir construction.In this study, samples of karst depressions were automatically extracted, and the attribute analysis and calculation were carried out based on DEM data and ArcGIS platform. According to the engineering practice, experts were organized to discuss and score so as to determine the influence factors of the evaluation model. Then the evaluation was conducted respectively in terms of terrain conditions, geological conditions, engineering conditions, environmental conditions, etc. The model of fuzzy comprehensive evaluation and the model of partial least square path have been constructed based on the seven key influencing factors of the decision-making of reservoir construction, including slope, reservoir capacity, petrofabric type, fault, hydrogeology, vertical distance between the upper and lower reservoirs and the ratio of distance to height. Taking the red line of ecological protection and the autothermal protection area as controlling variables, 488 candidate depressions in the study area were preliminarily screened and sorted in combination with the geological conditions of the supporting site. The results show that vertical distance, storage capacity and distance-height ratio play key roles in site selection. The application of GIS map overlay technology can eliminate the infeasible sites limited by environmental factors and the candidate depressions in the eco-environmental protection area. The geological conditions of the proposed lower reservoir and water conveyance power house were considered in the selection of the optimal candidate depressions, which effectively avoided the subjectivity and limitations of decision makers. A total of 6 of the top 10 selected depressions by the two models are consistent. Their good topographic conditions, suitable geological conditions, superior engineering conditions and good consistency indicate strong applicability and high reliability of the evaluation model. The two models are mutually matched. The depression selected is basically consistent with the quantitative standard of the index system, which has been well verified in engineering practice. No.1 depression of Baishui pond is the most suitable for the construction of power station for pumped storage. The research methods and results can further promote the resource utilization of karst depressions.

     

  • loading
  • [1]
    Thang Ngoc Cong. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Science, 2009, 19(3): 291-312.
    [2]
    李长健. 抽水蓄能电站减碳效益研究[J]. 水电与抽水蓄能, 2021, 7(6):45-48, 80.

    LI Changjian. Study on carbon reduction benefit of pumped storage power station[J]. Hydropower and Pumped Storage, 2021, 7(6):45-48, 80.
    [3]
    Nzotcha U, Kenfack J, Blanche Manjia M. Integrated multi-criteria decision making methodology for pumped hydro-energy storage plant site selection from a sustainable development perspective with an application[J]. Renewable & Sustainable Energy Reviews, 2019, 112:930-947.
    [4]
    姜光辉, 刘凡, 王奇岗, 郭芳. 基于表层岩溶带调控的峰丛洼地低影响开发构建[J]. 中国岩溶, 2022, 41(2): 165-173.

    JIANG Guanghui, LIU Fan, WANG Qigang, GUO Fang. Low impact development construction of peak cluster depression based on regulation of epikarst zone[J]. Carsologica Sinica, 2022, 41(2): 165-173.
    [5]
    苏维词, 潘真真, 郭晓娜, 杨吉, 易武英, 李艳丽, 杨振华, 谢砫军. 黔南FAST周边典型喀斯特峰丛洼地石漠化生态修复模式研究:以平塘县克度镇刘家湾周边为例[J]. 中国岩溶, 2016, 35(5):503-512.

    SU Weici, PAN Zhenzhen, GUO Xiaona, YANG Ji, YI Wuying, LI Yanli, YANG Zhenhua, XIE Zhujun. Study of ecological remediation modes for rocky desertification in typical karst peak-cluster depression surrounding south Guizhou FAST: An example of the periphery of Liujiawan, Kedu town, Pingtang county[J]. Carsologica Sinica, 2016, 35(5):503-512.
    [6]
    李新根, 徐敏, 周清平. 贵州省抽水蓄能电站合理规模分析[J]. 水利水电技术, 2013, 44(8):69-72. doi: 10.3969/j.issn.1000-0860.2013.08.019

    LI Xingen, XU Min, ZHOU Qingping. Reasonable scale analysis of pumped storage power station in Guizhou Province[J]. Water Resources and Hydropower Engineering, 2013, 44(8):69-72. doi: 10.3969/j.issn.1000-0860.2013.08.019
    [7]
    蒲楠楠, 顾文钰. 乌江流域抽水蓄能电站开发形势分析[J]. 江苏科技信息, 2018, 35(21):74-77. doi: 10.3969/j.issn.1004-7530.2018.21.023

    PU Nannan, GU Wenyu. Analysis of the development situation of pumped storage power station in Wujiang river basin[J]. Jiangsu Science & Technology Information, 2018, 35(21):74-77. doi: 10.3969/j.issn.1004-7530.2018.21.023
    [8]
    张娜, 董化宏, 何学铭. 我国抽水蓄能电站建设必要性和前景[J]. 中国三峡, 2010(11):16-20.
    [9]
    王兵, 刘朋帅, 邓凯磊. 基于模糊多准则决策模型的废弃矿井抽水蓄能电站选址研究[J]. 矿业科学学报, 2021, 6(6):667-677. doi: 10.19606/j.cnki.jmst.2021.06.005

    WANG Bing, LIU Pengshuai, DENG Kailei. Site selection of pumped storage power station in abandoned mines: Results from fuzzy-based multi criteria decision model[J]. Journal of Mining Science and Technology, 2021, 6(6):667-677. doi: 10.19606/j.cnki.jmst.2021.06.005
    [10]
    程春田. 碳中和下的水电角色重塑及其关键问题[J]. 电力系统自动化, 2021, 45(16):29-36. doi: 10.7500/AEPS20201220003

    CHENG Chuntian. Function remolding of hydropower systems for carbon neutral and its key problems[J]. Automation of Electric Power Systems, 2021, 45(16):29-36. doi: 10.7500/AEPS20201220003
    [11]
    任岩, 侯尚辰. 基于多能互补的抽水蓄能电站站址选择的研究[J]. 水电与抽水蓄能, 2021, 7(6):37-39.

    REN Yan, HOU Shangchen. Study on site selection of pumped storage power station based on multiple complementarity[J]. Hydropower and Pumped Storage, 2021, 7(6):37-39.
    [12]
    赵会林, 鲁新蕊. 抽水蓄能电站的选点原则[J]. 东北水利水电, 2012, 30(4):1-2, 71. doi: 10.3969/j.issn.1002-0624.2012.04.001

    ZHAO Huilin, LU Xinrui. Selection principle of pumped storage power station[J]. Water Resources & Hydropower of Northeast China, 2012, 30(4):1-2, 71. doi: 10.3969/j.issn.1002-0624.2012.04.001
    [13]
    吕优. 风–光–抽水蓄能联合发电系统优化调度研究[D]. 西安: 西安理工大学, 2018.

    LV You. Study on the optimal scheduling of a hybrid wind-solar-pumped storage power generation system[D]. Xi'an: Xi'an University of Technology, 2018.
    [14]
    卢开放, 侯正猛, 孙伟, 张盛友, 方琰藜, 高通. 云南省矿井抽水蓄能电站潜力评估与建设关键技术[J]. 工程科学与技术, 2022, 54(1):136-144.

    LU Kaifang, HOU Zhengmeng, SUN Wei, ZHANG Shengyou, FANG Yanli, GAO Tong. Potential evaluation and construction key technologies of pumped-storage power stations in mines of Yunnan Province[J]. Advanced Engineering Sciences, 2022, 54(1):136-144.
    [15]
    庞伟, 王帆. 抽水蓄能电站在电网运行中的地位与作用[J]. 水电与抽水蓄能, 2015, 1(6):1-4. doi: 10.3969/j.issn.1671-3893.2015.06.001

    PANG Wei, WANG Fan. The position and function of the pumped storage power station in power grid operation[J]. Hydropower and Pumped Storage, 2015, 1(6):1-4. doi: 10.3969/j.issn.1671-3893.2015.06.001
    [16]
    魏乐, 李思莹. 基于加权模糊 TOPSIS 和灰色关联度的风电场选址研究[ J]. 可再生能源, 2019, 37(12): 1869-1874.

    WEI Le, LI Siying. Site selection for wind power plants based on weighted fuzzy TOPSIS and grey correlation degree[J]. Renewable Energy Resources, 2019, 37(12): 1869-1874.
    [17]
    娜仁花. 基于模糊综合评价模型的风电场选址研究[D]. 北京: 华北电力大学, 2015.

    NA Renhua. Researching on location of wind power farm based on fuzzy comprehensive evaluation model[D]. Beijing: North China Electric Power University, 2015.
    [18]
    Tan Q, Wei T, Peng W, Yu Z, Wu C. Comprehensive evaluation model of wind farm site selection based on ideal matter element and grey clustering[J]. Journal of Cleaner Production, 2020, 272:122658. doi: 10.1016/j.jclepro.2020.122658
    [19]
    Wu Y, Liu L, Gao J, Chu H, Xu C. An extended VIKOR-based approach for pumped hydro energy storage plant site selection with heterogeneous information[J]. Information, 2017, 8(3):106. doi: 10.3390/info8030106
    [20]
    赵勇. 滇东山原区水库岩溶渗漏系统工程地质研究[D]. 成都: 成都理工大学, 2015.

    ZHAO Yong. Systematic engineering geological research of reservior leakage in karst in mountain plateau of eastern Yunnan[D]. Chengdu: Chengdu University of Technology, 2015.
    [21]
    Rogeau A, Girard R, Kariniotakis G. A generic GIS-based method for small Pumped Hydro Energy Storage (PHES) potential evaluation at large scale[J]. Applied Energy, 2017, 197:241-253. doi: 10.1016/j.apenergy.2017.03.103
    [22]
    陈宏宇, 陈同法, 秦晓宇, 卢锟明. 混合式抽水蓄能电站选点条件分析[J]. 水电与抽水蓄能, 2017, 3(4):28-31, 44.

    CHEN Hongyu, CHEN Tongfa, QIN Xiaoyu, LU Kunming. Analysis of selected conditions of mixed pumped storage power station[J]. Hydropower and Pumped Storage, 2017, 3(4):28-31, 44.
    [23]
    Ahmed H G I, Mohamed M H, Saleh S S. A GIS model for exploring the water pumped storage locations using remote sensing data[J]. The Egyptian Journal of Remote Sensing and Space Science, 2021, 24(3):515-523. doi: 10.1016/j.ejrs.2021.09.006
    [24]
    Lu B, Stocks M, Blakers A, Anderson K. Geographic information system algorithms to locate prospective sites for pumped hydro energy storage[J]. Applied Energy, 2018, 222:300-312. doi: 10.1016/j.apenergy.2018.03.177
    [25]
    Ji L, Li C, Li X, Li P, Zhu H, Zhang Z. Multi-method combination site selection of pumped storage power station considering power structure optimization[J]. Sustainable Energy Technologies and Assessments, 2022, 49:101680. doi: 10.1016/j.seta.2021.101680
    [26]
    R Lacal, N Fitzgerald, P Leahy. Pumped-hydro energy storage: Potential for transformation from single dams[M]. Luxembourg: Publications Office of the European Union, 2012: 1-55.
    [27]
    Kusre B C, Baruah D C, Bordoloi P K, Patra S C. Assessment of hydropower potential using GIS and hydrological modeling technique in Kopili river basin in Assam (India)[J]. Applied Energy, 2010, 87(1):298-309. doi: 10.1016/j.apenergy.2009.07.019
    [28]
    Yi C S, Lee J H, Shim M P. Site location analysis for small hydropower using geo-spatial information system[J]. Renewable Energy, 2010, 35(4):852-861. doi: 10.1016/j.renene.2009.08.003
    [29]
    陈德建. 仙游西苑抽水蓄能电站工程区主要工程地质问题分析[J]. 水利科技, 2008, 121(4):26-29.

    CHEN Dejian. Analysis on the main engineering geology problems at project area of Xianyou Xiyuan pumped storage power station[J]. Hydraulic Science and Technology, 2008, 121(4):26-29.
    [30]
    林金洪, 黄运龙. 洪屏抽水蓄能电站工程区主要工程地质问题及处理措施[C]//中国地质学会. 2018年全国工程地质学术年会论文集. 北京: 科学出版社, 2018: 572-580.

    LIN Jinhong, HUANG Yunlong. Main engineering geological problems and treatment measures in Hongping pumped storage power station project area[C]//Geological Society of China. Proceedings of National Engineering Geology Conference 2018. Beijing: Science Press, 2018: 572-580.
    [31]
    蔡鹤鸣. 泰安一级抽水蓄能电站工程简介[J]. 山东电力技术, 1995(4):1-3, 7.

    CAI Heming. The project of Taian pumped storage power station[J]. Shandong Electric Power, 1995(4):1-3, 7.
    [32]
    唐文华. 高水头调节性能较好的遥桥峪和抚宁抽水蓄能电站[C]//中国水力发电工程学会2003年抽水蓄能学术年会论文集, 2003.
    [33]
    Katsaprakakis D A, Christakis D G, Stefanakis I, Spanos P, Stefanakis N. Technical details regarding the design, the construction and the operation of seawater pumped storage systems[J]. Energy, 2013, 55:619-630. doi: 10.1016/j.energy.2013.01.031
    [34]
    Jiang Z G, Zhang H. Sutherland J W. Development of multi-criteria decision making model for remanufacturing technology portfolio selection[J]. Journal of Cleaner Production, 2011, 19(17-18): 1939–1945.
    [35]
    梁海波, 谷兆祺. 抽水蓄能电站站址选择的探讨[J]. 红水河, 1996, 15(1):10-12.

    LIANG Haibo, GU Zhaoqi. Research on selection of project site for pumped storage power plant[J]. Hongshui River, 1996, 15(1):10-12.
    [36]
    洪增林, 徐通, 薛旭平. 基于AHP的地质遗迹旅游资源评价:以汉中天坑群为例[J]. 中国岩溶, 2019, 38(2):276-280.

    HONG Zenglin, XU Tong, XUE Xuping. Evaluation of geological relics tourism resources based on AHP: An example of the Hanzhong Tiankeng group[J]. Carsologica Sinica, 2019, 38(2):276-280.
    [37]
    王惠文, 付凌晖. PLS路径模型在建立综合评价指数中的应用[J]. 系统工程理论与实践, 2004, 24(10):80-85. doi: 10.3321/j.issn:1000-6788.2004.10.014

    WANG Huiwen, FU Linghui. The application research of partial least square path modeling on establishing synthesis evaluation index[J]. Systems Engineering-Theory & Practice, 2004, 24(10):80-85. doi: 10.3321/j.issn:1000-6788.2004.10.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (178) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return