Processing math: 100%
  • Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
JI Shaocong, ZHANG Qingyu, LIANG Bin, LI Jingrui, BA Junjie, NIE Guoquan, DONG Hongqi, MO Guochen. Experimental simulation of dissolution to dolomite in formation water of Jixianian Wumishan Formation in the Xiong'an New Area[J]. CARSOLOGICA SINICA, 2023, 42(4): 809-818. doi: 10.11932/karst20230414
Citation: JI Shaocong, ZHANG Qingyu, LIANG Bin, LI Jingrui, BA Junjie, NIE Guoquan, DONG Hongqi, MO Guochen. Experimental simulation of dissolution to dolomite in formation water of Jixianian Wumishan Formation in the Xiong'an New Area[J]. CARSOLOGICA SINICA, 2023, 42(4): 809-818. doi: 10.11932/karst20230414

Experimental simulation of dissolution to dolomite in formation water of Jixianian Wumishan Formation in the Xiong'an New Area

doi: 10.11932/karst20230414
  • Received Date: 2022-04-27
  • With the richest geothermal resources and the best development and utilization conditions in the central and eastern China, the Xiong'an New Area is the home of three large and medium-sized geothermal fields—Xiongxian, Rongcheng and Gaoyang. The Jixianian Wumishan Formation in the Xiong'an New Area has good reservoir endowment, large water yield and easy reinjection, which is the focus of geothermal resource exploration. At present, acid solutions, high-salinity water solutions or sea water which are prepared by researchers themselves are mainly used in simulation experiments, but less formation water is used as the experimental fluid. In this study, the dolomite of Wumishan Formation in the Xiong'an New Area is taken as the research object, and the formation water of Wumishan Formation in the underground is taken as the experimental fluid. The dissolution simulation experiment under high temperature and high pressure has been carried out to analyze the influence of temperature, pressure, lithology, structure and other factors on the dissolution of dolomite. This experiment adopts the simulation experimental device of dissolution kinetics under the conditions of high-temperature and high-pressure independently designed by Karst Geology Research Institute of the Chinese Academy of Geological Sciences. The formation water from the whole section of Wumishan Formation in the geothermal well of the Xiong'an New Area is taken as the reaction fluid. At the same time, considering the two factors of temperature and pressure, a total of 12 groups of experiments in the range of 40 ℃, 10 MPa to 150 ℃, 20 MPa have been carried out to simulate the dissolution of formation water of Wumishan Formation in the Xiong'an New Area on dolomite from the shallow burial to the deep burial. The experimental results show that dissolution rates of samples in the formation water decreased with the increase of temperature in general. The rates experienced a rapid decrease before a slow increase and then a rapid decrease again, with an obvious increase from 100 ℃ to 140 ℃. Dissolution rates of samples in formation water increased obviously with the increase of pressure. The variation of Ca2+ and Mg2+ concentrations with temperature and pressure was consistent with that of dissolution rates with temperature and pressure. All samples showed a certain degree of corrosion under the experimental conditions, mainly the corrosion of the sample surface. The samples with less developed pores and microcracks only corroded on the surface, which blurred the sample surface. The samples with developed pores and microcracks were eroded and expanded along intergranular pores, intercrystalline pores and various fractures, and finally connected to a certain extent. Therefore, the results of this study show that the buried dissolution of carbonate rocks will decrease in the burial diagenetic environment, with the increase of depth and temperature. But there is a window with higher dissolution capacity in the range of 100 ℃-140 ℃, which may be a favorable temperature range for the formation of dolomite karst reservoirs in the Wumishan Formation in the study area. For the samples with undeveloped pores and microcracks, it is difficult for soluble fluid to enter the sample for large-scale corrosion, but only to stay on and blur the sample surface during the experiment. The samples with pores and microcracks developed are corroded and expanded along intergranular and intercrystalline pores and various fractures and fissures, and are finally connected to a certain extent.

     

  • [1]
    王贵玲, 高俊, 张保建, 邢一飞, 张薇, 马峰. 雄安新区高阳低凸起区雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报, 2020, 94(7):1970-1980.

    WANG Guiling, GAO Jun, ZHANG Baojian, XING Yifei, ZHANG Wei, MA Feng. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong'an New Area[J]. Acta Geologica Sinica, 2020, 94(7):1970-1980.
    [2]
    鲁锴, 鲍志东, 季汉成, 刘金侠, 王贵玲, 马峰, 郭瑞婧, 曹瑛倬, 杨飞, 符勇, 李潇博, 华盈鑫, 阙宜娟, 李宗峰, 许西挺, 胡先才. 雄安新区蓟县系雾迷山组岩溶热储特征、主控因素及有利区预测[J]. 古地理学报, 2019, 21(6):885-900.

    LU Kai, BAO Zhidong, JI Hancheng, LIU Jinxia, WANG Guiling, MA Feng, GUO Ruijing, CAO Yingzhuo, YANG Fei, FU Yong, LI Xiaobo, HUA Yingxin, QUE Yijuan, LI Zongfeng, XU Xiting, HU Xiancai. Characteristics, main controlling factors and favorable area prediction of karstic geothermal reservoirs of the Jixianian Wumishan Formation in Xiong'an New Area[J]. Journal of Palaeogeography, 2019, 21(6):885-900.
    [3]
    吴爱民, 马峰, 王贵玲, 刘金侠, 胡秋韵, 苗青壮. 雄安新区深部岩溶热储探测与高产能地热井参数研究[J]. 地球学报, 2018, 39(5):523-532.

    WU Aimin, MA Feng, WANG Guiling, LIU Jinxia, HU Qiuyun, MIAO Qingzhuang. A study of deep-seated karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiongan New Area[J]. Acta Geoscientia Sinica, 2018, 39(5):523-532.
    [4]
    唐博宁, 朱传庆, 邱楠生, 崔悦, 郭飒飒, 陈驰. 雄安新区雾迷山组岩溶裂隙发育特征[J]. 地质学报, 2020, 94(7):2002-2012.

    TANG Boning, ZHU Chuanqing, QIU Nansheng, CUI Yue, GUO Sasa, CHEN Chi. Characteristics of the karst thermal reservoir in the Wumishan Formation in the Xiong'an New Area[J]. Acta Geologica Sinica, 2020, 94(7):2002-2012.
    [5]
    邓宇林, 郭绪磊, 罗明明, 陈祥勇, 况野, 周宏. 基于扫描电镜和CT成像技术的碳酸盐岩溶蚀作用微观结构和变化规律研究[J]. 中国岩溶, 2022, 41(5):698-707.

    DENG Yulin, GUO Xulei, LUO Mingming, CHEN Xiangyong, KUANG Ye, ZHOU Hong. Study on the microstructure and variation law of carbonate rock dissolution based on scanning electron microscopy and CT imaging technology[J]. Carsologica Sinica, 2022, 41(5):698-707.
    [6]
    Sanders D. Syndepositional dissolution of calcium carbonate in neritic carbonate environments: Geological recognition, processes, potential significance[J]. Journal of African Earth Science, 2003, 36(3):99-134. doi: 10.1016/S0899-5362(03)00027-7
    [7]
    夏日元, 唐健生, 罗伟权, 邓自强, 关碧珠. 油气田古岩溶与深岩溶研究新进展[J]. 中国岩溶, 2001, 20(1):76.

    XIA Riyuan, TANG Jiansheng, LUO Weiquan, DENG Ziqiang, GUAN Bizhu. New progress in the study of paleokarst and deep karst in oil and gas fields[J]. Carsologica Sinica, 2001, 20(1):76.
    [8]
    马永生, 何登发, 蔡勋育, 刘波. 中国海相碳酸盐岩的分布及油气地质基础问题[J]. 岩石学报, 2017, 33(4):1007-1020.

    MA Yongsheng, HE Dengfa, CAI Xunyu, LIU Bo. Distribution of fundamental science questions of petroleum geology of marine carbonate in China[J]. Acta Petrologica Sinica, 2017, 33(4):1007-1020.
    [9]
    何治亮, 张军涛, 丁茜, 尤东华, 彭守涛, 朱东亚, 钱一雄. 深层-超深层优质碳酸盐岩储层形成控制因素[J]. 石油与天然气地质, 2017, 38(4):633-644.

    HE Zhiliang, ZHANG Juntao, DING Xi, YOU Donghua, PENG Shoutao, ZHU Dongya, QIAN Yixiong. Factors controlling the formation of high-quality deep to ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2017, 38(4):633-644.
    [10]
    张宇, 赵伦, 李长海, 张祥忠. 古岩溶油气储层研究进展[J]. 中国岩溶, 2022, 41(5):808-824.

    ZHANG Yu, ZHAO Lun, LI Changhai, ZHANG Xiangzhong. Research progress of paleokarst oil and gas reservoirs[J]. Carsologica Sinica, 2022, 41(5):808-824.
    [11]
    赵文智, 沈安江, 胡素云, 张宝民, 潘文庆, 周进高, 汪泽成. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发, 2012, 39(1):1-12. doi: 10.1016/S1876-3804(12)60010-X

    ZHAO Wenzhi, SHEN Anjiang, HU Suyun, ZHANG Baomin, PAN Wenqing, ZHOU Jingao, WANG Zecheng. Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration and Development, 2012, 39(1):1-12. doi: 10.1016/S1876-3804(12)60010-X
    [12]
    沈安江, 赵文智, 胡安平, 佘敏, 陈娅娜, 王小芳. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发, 2015, 42(5):545-554.

    SHEN Anjiang, ZHAO Wenzhi, HU Anping, SHE Min, CHEN Yana, WANG Xiaofang. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5):545-554.
    [13]
    张庆玉, 李景瑞, 梁彬, 淡永, 曹建文. 塔里木盆地塔中地区奥陶系古岩溶包裹体特征及古环境意义[J]. 中国岩溶, 2020, 39(6):894-899.

    ZHANG Qingyu, LI Jingrui, LIANG Bin, DAN Yong, CAO Jianwen. Characteristics and paleoenvironmental significance of Ordovician karst inclusions in the Tazhong area, Tarim Basin[J]. Carsologica Sinica, 2020, 39(6):894-899.
    [14]
    张庆玉, 梁彬, 秦凤蕊, 曹建文, 淡永, 李景瑞. 塔里木盆地奥陶系古潜山碳酸盐岩岩溶储层评价与预测:以轮古7井区以东为例[J]. 中国岩溶, 2017, 36(1):32-41.

    ZHANG Qingyu, LIANG Bin, QIN Fengrui, CAO Jianwen, DAN Yong, LI Jingrui. Evaluation and prediction of carbonate karst reservoirs in the Ordovician buried hills beneath the Tarim basin: An example east of the Lungu 7 well block[J]. Carsologica Sinica, 2017, 36(1):32-41.
    [15]
    梁乘鹏, 淡永, 徐胜林, 李富祥, 庞春雨, 魏家琦. 塔里木盆地新垦地区奥陶系层间岩溶储层形成机制与控制因素[J]. 中国岩溶, 2019, 38(3):427-437.

    LIANG Chengpeng, DAN Yong, XU Shenglin, LI Fuxiang, PANG Chunyu, WEI Jiaqi. Interlayer karst reservoir characteristics and development controlling factors of Ordovician in the Xinken area, Tarim Basin[J]. Carsologica Sinica, 2019, 38(3):427-437.
    [16]
    佘敏, 蒋义敏, 胡安平, 吕玉珍, 陈薇, 王永生, 王莹. 碳酸盐岩溶蚀模拟实验技术进展及应用[J]. 海相油气地质, 2020, 25(1):12-21.

    SHE Min, JIANG Yimin, HU Anping, LV Yuzhen, CHEN Wei, WANG Yongsheng, WANG Ying. The progress and application of dissolution simulation of carbonate rock[J]. Marine Origin Petroleum Geology, 2020, 25(1):12-21.
    [17]
    罗文军, 季少聪, 刘义成, 刘曦翔, 淡永, 梁彬, 聂国权. 四川盆地高石梯–磨溪地区震旦系灯影组白云岩溶蚀差异实验研究[J/OL]. 中国岩溶: 1-10. http://kns.cnki.net/kcms/detail/45.1157.P.20210202.1045.002.html.

    LUO Wenjun, JI Shaocong, LIU Yicheng, LIU Xixiang, DAN Yong, LIANG Bin, NIE Guoquan. Experiment for the differential dissolution of dolomite of Sinian Dengying Formation in the Gaoshiti-Moxi area, Sichuan Basin[J/OL]. Carsologica Sinica: 1-10. http://kns.cnki.net/kcms/detail/45.1157.P.20210202.1045.002.html.
    [18]
    杨俊杰, 黄思静, 张文正, 黄月明, 刘桂霞, 肖林萍. 表生和埋藏成岩作用的温压条件下不同组成碳酸盐岩溶蚀成岩过程的实验模拟[J]. 沉积学报, 1995(4):49-54.

    YANG Junjie, HUANG Sijing, ZHANG Wenzheng, HUANG Yueming, LIU Guixia, XIAO Linping. Experimental simulation of dissolution for carbonate with different composition under the conditions from epigenesis to burial diagenesis environment[J]. Acta Sedimentologica Sinica, 1995(4):49-54.
    [19]
    佘敏, 朱吟, 沈安江, 郑兴平, 贺训云. 塔中北斜坡鹰山组碳酸盐岩溶蚀的模拟实验研究[J]. 中国岩溶, 2012, 31(3):234-239.

    SHE Min, ZHU Yin, SHEN Anjiang, ZHENG Xingping, HE Xunyun. Simulation experiment for the dissolution of carbonate rocks of the Yingshan formation on the northern slope of Tazhong uplift[J]. Carsologica Sinica, 2012, 31(3):234-239.
    [20]
    佘敏, 寿建峰, 沈安江, 潘立银, 胡安平, 胡圆圆. 碳酸盐岩溶蚀规律与孔隙演化实验研究[J]. 石油勘探与开发, 2016, 43(4):564-572.

    SHE Min, SHOU Jianfeng, SHEN Anjiang, PAN Liyin, HU Anping, HU Yuanyuan. Experimental simulation of dissolution law and porosity evolution of carbonate rock[J]. Petroleum Exploration and Development, 2016, 43(4):564-572.
    [21]
    蒋小琼. 普光与建南气田碳酸盐岩礁滩相储层埋藏溶蚀作用对比研究[D]. 北京: 中国地质大学, 2014.

    JIANG Xiaoqiong. Contrastive research on the burial dissolution of carbonate reef-shoal reservoir rocks of Puguang and Jiannan gas fields in Sichuan basin[D]. Beijing: China University of Geosciences, 2014.
    [22]
    蒋小琼, 王恕一, 范明, 张建勇, 管宏林, 鲍云杰. 埋藏成岩环境碳酸盐岩溶蚀作用模拟实验研究[J]. 石油实验地质, 2008, 30(6):643-646.

    JIANG Xiaoqiong, WANG Shuyi, FAN Ming, ZHANG Jianyong, GUAN Honglin, BAO Yunjie. Study of simulation experiment for carbonate rocks dissolution in burial diagenetic environment[J]. Petroleum Geology and Experiment, 2008, 30(6):643-646.
    [23]
    彭军, 王雪龙, 韩浩东, 尹申, 夏青松, 李斌. 塔里木盆地寒武系碳酸盐岩溶蚀作用机理模拟实验[J]. 石油勘探与开发, 2018, 45(3):415-425.

    PENG Jun, WANG Xuelong, HAN Haodong, YIN Shen, XIA Qingsong, LI Bin. Simulation for the dissolution mechanism of Cambrian carbonate rocks in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(3):415-425.
    [24]
    谭飞, 张云峰, 王振宇, 董兆雄, 黄正良, 王前平, 高君微. 鄂尔多斯盆地奥陶系不同组构碳酸盐岩埋藏溶蚀实验[J]. 沉积学报, 2017, 35(2):413-424.

    TAN Fei, ZHANG Yunfeng, WANG Zhenyu, DONG Zhaoxiong, HUANG Zhengliang, WANG Qianping, GAO Junwei. Simulation experiment for the burial dissolution of different petrofabric carbonate rocks of Ordovician in the Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35(2):413-424.
    [25]
    范明, 蒋小琼, 刘伟新, 张建勇, 陈红宇. 不同温度条件下CO2水溶液对碳酸盐岩的溶蚀作用[J]. 沉积学报, 2007(6):825-830.

    FAN Ming, JIANG Xiaoqiong, LIU Weixin, ZHANG Jianyong, CHEN Hongyu. Dissolution of carbonate rocks in CO2 solution under the different temperatures[J]. Acta Sedimentologica Sinica, 2007(6):825-830.
  • Relative Articles

    [1]LI Hao, YANG Qiang, LUO Xuan, WANG Binghu, SHAO Changqing, WANG Siyuan, LE Qilang. Suitability evaluation of utilizing urban underground space in the karst area in Gui'an New Area[J]. CARSOLOGICA SINICA, 2024, 43(1): 176-187. doi: 10.11932/karst2021y38
    [2]WANG Xiaoduo, ZHOU Zhongfa, DONG Hui, DING Shengjun, GONG Xiaohuan, XIONG Yong, SU Dan, ZHANG Ye. Temporal and spatial variations of soil CO2 and δ13CCO2 from different land uses in typical dolomite areas of Southwest China[J]. CARSOLOGICA SINICA, 2024, 43(5): 1034-1046. doi: 10.11932/karst20240504
    [3]XIANG Gang, WANG Mingzhang, ZENG Mudan, WANG Jiaming, FAN Shanxing. Study on the difference of water-bearing capacity of fault-controlled dolomites in Dengying Formation of a mining area in central Guizhou and its significance of water control[J]. CARSOLOGICA SINICA, 2023, 42(3): 402-412. doi: 10.11932/karst2022y19
    [4]GU Zhanfei, HUANG Bingyan, LIU Zhikui, QUAN Xin, XIE Yongxiong. Experimental study on the influence of vibration loads and temperatures on the dissolution of dolomite and limestone[J]. CARSOLOGICA SINICA, 2023, 42(4): 834-841. doi: 10.11932/karst202304y01
    [5]JIANG Lulu, SUI Haibo, KANG Fengxin, LI Changsuo, WEI Shanming, YU Lingqin, LI Yue. Hydrogeochemical characteristics and formation mechanism of the karst thermal reservoir at the northern edge of the Luzhong Uplift[J]. CARSOLOGICA SINICA, 2023, 42(5): 1005-1026, 1036. doi: 10.11932/karst20230514
    [6]YU Jie, MAO Xumei, PENG Hui, WEN Meixia, WANG Xin, FAN Wei, TANG Wei. Genesis mechanism of geothermal fluid with high mineralization in karst geothermal reservoir: A case study of geothermal field of the Yanchang river, Badong county[J]. CARSOLOGICA SINICA, 2023, 42(4): 795-808. doi: 10.11932/karst2022y32
    [7]LUO Wenjun, JI Shaocong, LIU Xixiang, DAN Yong, LIANG Bin, NIE Guoquan. Experiment for the differential dissolution of dolomite of Sinian Dengying Formation in the Gaoshiti–Moxi area, the Sichuan basin[J]. CARSOLOGICA SINICA, 2023, 42(6): 1312-1321. doi: 10.11932/karst20230612
    [8]ZHANG Xiaoqin, LUO Weijun, WANG Yanwei, CAI Xianli, LYU Yina, WANG Shijie. Effects of rock tablet lithology difference on estimation of rock dissolution rate and carbon flux[J]. CARSOLOGICA SINICA, 2022, 41(3): 477-487. doi: 10.11932/karst20220314
    [9]MO Chunmeng, HUANG Fen, HU Xiaonong, CAO Jianhua, XIN Shenglin, ZHANG Liankai. Laboratory simulation of the dissolution of carbonate rocks sampled from Maocun,Guilin by sulfuric acid and nitric acid[J]. CARSOLOGICA SINICA, 2021, 40(4): 608-616.
    [10]DAI Linyu, XIAO Shizhen, ZENG Cheng, YAN Wei, XIAO Hua, TAI Zhiqin. Characteristics and influencing factors of soil CO2 release under different land use types in the typical dolomite area of humid subtropical regions[J]. CARSOLOGICA SINICA, 2021, 40(4): 617-624.
    [11]WU Zhiqiang, YANG Xiude, LUO Yangqiao, LI Ling. Karst water prospecting and development technology in karst peak cluster basin area,central Guizhou:A case study of groundwater pump well project in Wudang district,Guiyang[J]. CARSOLOGICA SINICA, 2021, 40(4): 671-679.
    [12]YANG Jing, WANG Sheng, DING Yali, CHEN Hongsong. Moisture-retaining and transmissibility properties of soil profiles with different architectures in dolomite karst areas[J]. CARSOLOGICA SINICA, 2020, 39(5): 697-704. doi: 10.11932/karst20200507
    [13]GUO Yun, WANG Zhihui, ZHANG Zhaohui. Study on community characteristics of bryophytes in dolomite cave twilight zones:An example of the Shuidong Cave in Suiyang county, Guizhou Province[J]. CARSOLOGICA SINICA, 2018, 37(3): 388-399. doi: 10.11932/karst20180309
    [14]TANG Yuan, LIAN Bin, CHENG Jianzhong. Archaeal community structure and diversity of the carbonate rocks in karst regions, Guizhou:A case study of the Nanjiang canyon[J]. CARSOLOGICA SINICA, 2017, 36(2): 193-201. doi: 10.11932/karst20170206
    [15]PENG Tao, XING Xuegang, CAI Xianli, WANG Shijie, ZHANG Xinbao, MENG Fande, ZHANG Lin. Pot experiment research on the effects of water retaining agent and activated carbon as soil amendments for plant growing on dolomitic rocky desertification slopes[J]. CARSOLOGICA SINICA, 2016, 35(5): 525-532. doi: 10.11932/karst20160508
    [16]LI Rui, GAO Jie, ZHANG Li, LI Jin-jin, JI Hong-bing. Element geochemical characteristics of red weathering crust from dolomite, north Guizhou, China[J]. CARSOLOGICA SINICA, 2014, 33(4): 396-404. doi: 10.11932/karst20140402
    [17]HUANG Si-jing, CHENG Xin-yi, ZHAO jie, ZHANG Wen-zheng. Test on the dolomite dissolution under subaerial temperature and pressure[J]. CARSOLOGICA SINICA, 2012, 31(4): 349-359. doi: 10.3969/j.issn.1001-4810.2012.04.002
    [18]FENG Jin-liang, ZHU Li-ping. FEATURES AND GENETIC IMPLICATION OF THE MAGNETIC FABRIC OF TERRA ROSSA ON DOLOMITE[J]. CARSOLOGICA SINICA, 2005, 24(4): 270-275. doi: 10.3969/j.issn.1001-4810.2005.04.003
    [19]Liu Zaihua. FIELD EXPERIMENTAL RESEARCH ON THE CORROSIONKINETICS OF LIMESTONE AND DOLOMITE INALLOGENIC WATER- Casefrom Yaoshan Mt. , Guilin[J]. CARSOLOGICA SINICA, 2000, 19(1): 1-4. doi: 10.3969/j.issn.1001-4810.2000.01.001
    [20]Jiang Zhongcheng. ELEMENTMIGRATION IN KARST GEOCHEMICALPROCESSES OF THE DOLOMITE IN NONGLA, GUANGXI[J]. CARSOLOGICA SINICA, 1997, 16(4): 304-312.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.3 %FULLTEXT: 25.3 %META: 58.4 %META: 58.4 %PDF: 16.4 %PDF: 16.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.9 %其他: 8.9 %其他: 0.4 %其他: 0.4 %上海: 0.7 %上海: 0.7 %中卫: 3.3 %中卫: 3.3 %临汾: 0.4 %临汾: 0.4 %北京: 23.0 %北京: 23.0 %南充: 0.4 %南充: 0.4 %南宁: 0.4 %南宁: 0.4 %南昌: 0.7 %南昌: 0.7 %南通: 0.4 %南通: 0.4 %呼和浩特: 0.4 %呼和浩特: 0.4 %哥伦布: 0.7 %哥伦布: 0.7 %唐山: 0.4 %唐山: 0.4 %城南: 0.4 %城南: 0.4 %大同: 0.4 %大同: 0.4 %大庆: 0.7 %大庆: 0.7 %天津: 0.7 %天津: 0.7 %安康: 0.7 %安康: 0.7 %宣城: 1.1 %宣城: 1.1 %崇左: 8.2 %崇左: 8.2 %巴音郭楞: 0.4 %巴音郭楞: 0.4 %常州: 0.4 %常州: 0.4 %广州: 0.7 %广州: 0.7 %廊坊: 0.7 %廊坊: 0.7 %成都: 0.4 %成都: 0.4 %无锡: 0.4 %无锡: 0.4 %昆明: 1.9 %昆明: 1.9 %晋中: 0.4 %晋中: 0.4 %朝阳: 0.4 %朝阳: 0.4 %杭州: 0.4 %杭州: 0.4 %武汉: 0.4 %武汉: 0.4 %济南: 0.4 %济南: 0.4 %海口: 0.4 %海口: 0.4 %淮南: 0.4 %淮南: 0.4 %深圳: 0.4 %深圳: 0.4 %温州: 0.4 %温州: 0.4 %湘潭: 0.7 %湘潭: 0.7 %烟台: 0.4 %烟台: 0.4 %珠海: 0.4 %珠海: 0.4 %班加罗尔: 0.7 %班加罗尔: 0.7 %石嘴山: 0.4 %石嘴山: 0.4 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.4 %福州: 0.4 %秦皇岛: 0.4 %秦皇岛: 0.4 %纽约: 6.3 %纽约: 6.3 %肇庆: 0.4 %肇庆: 0.4 %芒廷维尤: 1.9 %芒廷维尤: 1.9 %苏州: 0.4 %苏州: 0.4 %西宁: 16.4 %西宁: 16.4 %西安: 1.1 %西安: 1.1 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 1.5 %贵阳: 1.5 %运城: 2.2 %运城: 2.2 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.4 %郑州: 0.4 %重庆: 0.4 %重庆: 0.4 %锡林郭勒盟: 0.4 %锡林郭勒盟: 0.4 %长春: 0.4 %长春: 0.4 %长沙: 1.1 %长沙: 1.1 %陵水: 0.4 %陵水: 0.4 %首尔: 0.7 %首尔: 0.7 %马赛: 0.4 %马赛: 0.4 %鹤岗: 0.4 %鹤岗: 0.4 %黔东南: 0.4 %黔东南: 0.4 %其他其他上海中卫临汾北京南充南宁南昌南通呼和浩特哥伦布唐山城南大同大庆天津安康宣城崇左巴音郭楞常州广州廊坊成都无锡昆明晋中朝阳杭州武汉济南海口淮南深圳温州湘潭烟台珠海班加罗尔石嘴山石家庄福州秦皇岛纽约肇庆芒廷维尤苏州西宁西安诺沃克贵阳运城邯郸郑州重庆锡林郭勒盟长春长沙陵水首尔马赛鹤岗黔东南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (156) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return