• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 42 Issue 4
Nov.  2023
Turn off MathJax
Article Contents
GAO Miao, WU Xiuqin. Temporal and spatial characteristics and peak prediction of carbon emissions in Guangxi Zhuang Autonomous Region[J]. CARSOLOGICA SINICA, 2023, 42(4): 763-774. doi: 10.11932/karst20230410
Citation: GAO Miao, WU Xiuqin. Temporal and spatial characteristics and peak prediction of carbon emissions in Guangxi Zhuang Autonomous Region[J]. CARSOLOGICA SINICA, 2023, 42(4): 763-774. doi: 10.11932/karst20230410

Temporal and spatial characteristics and peak prediction of carbon emissions in Guangxi Zhuang Autonomous Region

doi: 10.11932/karst20230410
  • Received Date: 2022-06-14
  • Accepted Date: 2023-02-23
  • Under the background of increasing international attention to the topic of global warming, in 2020 China was committed to peaking carbon emissions by 2030 with its enhancing independent contribution and powerful policies and measures. All provinces and localities actively respond to the commitment. Guangxi Zhuang Autonomous Region is an important source of industrial raw materials for China, but the slow industrialization and the excessive reliance of economic growth on industrial development have led to a significant increase in carbon emissions. Therefore, the purpose of exploring the historical and future laws of carbon emissions in Guangxi Zhuang Autonomous is to achieve the carbon peak goal as soon as possible.The research is based on the county-level carbon emission data of Guangxi Zhuang Autonomous Region from 2003 to 2017, sourced from Carbon Emission Accounts and Datasets (CEADS) which has the longest time span (from 1997 to 2017), the widest coverage and the highest accuracy of China's data on county-level carbon emissions. By GIS spatial analysis method, trend analysis and analysis of exploratory spatial data, the temporal and spatial changes of three indicators—carbon emissions, carbon emission intensity and carbon emission pressure—are analyzed at provincial, municipal and county levels in Guangxi. According to the hierarchical combination of the three indicators, Guangxi Zhuang Autonomous Region is divided into six different types of regional carbon emissions, and on this basis, seven carbon emission scenarios are simulated in terms of future population, and social and economic development. The extensible stochastic environmental impact model (STIRPAT) is used to predict the peak of carbon emissions in different scenarios for the types of regional carbon emissions in Guangxi from 2022 to 2035. (1) From 2003 to 2017, the total carbon emissions of Guangxi Zhuang Autonomous Region increased significantly, and the carbon emissions at the city level showed a spatial pattern of Nanning City being the highest and Fangchenggang City being the lowest. Carbon emissions at the county level showed disequilibrium. Though the carbon emission intensity significantly reduced, it showed a spatial pattern of being the highest in Laibin City and the lowest in Hezhou City. The index of carbon emission pressure increased significantly. The overall trend of variation coefficient of total carbon emissions is stable, showing high-intensity variation. (2) According to the classification and combination of total carbon emission, carbon emission intensity and carbon emissions pressure, carbon emissions can be divided into six regional types, including high total amount-high intensity-high pressure type (H-H-H), high total amount-low intensity-high pressure type (H-L-H), high total amount-low intensity-low pressure type (H-L-L), high total amount-high intensity-low pressure type (H-H-L), low total amount-high intensity-low pressure type (L-H-L), and low total amount-low intensity-low pressure type (L-L-L). According to the current scenario and future development of influencing factors of carbon emissions in Guangxi, seven scenarios are divided, including benchmark scenario, energy-saving scenario, scenario of rapid economic development, scenarios of simultaneous development of economy and emission reduction (a and b), scenario of green development and scenario of emission reduction. (3) The forecast results of Guangxi's whole carbon peak period show that four scenarios such as energy-saving scenario, scenario of simultaneous development of economy and emission reduction (b), scenario of green development and scenario of emission reduction can achieve the peak carbon emmissions by 2030. The peak time of carbon emissions is 2023, 2030, 2029 and 2030 respectively. The prediction results of reaching peak carbon emissions in different regions show that the energy-saving scenarios of H-H-L and H-L-L can achieve the goal of peak reaching. The H-H-H type and H-L-H type cannot achieve the peak goal. The benchmark scenario and the rest five scenarios of L-L-L can all achieve the peak by 2030. The L-H-L type reached its peak in 2018. The research systematically analyzes the overall and internal changes of carbon emissions in Guangxi Zhuang Autonomous Region, and points out the scenario mode of reaching the peak carbon emissions, which provides a strong reference for the measures and plans of emission reduction taken by Guangxi government. In the future, Guangxi Zhuang Autonomous Region should coordinate the relationship between energy supply and emission reduction, and take specific measures for emission reduction according to local conditions by referring to the scenario model of peak carbon emissions, so as to achieve the goal of reaching the peak carbon emissions in 2030.

     

  • loading
  • [1]
    张志强, 曾静静, 曲建升. 世界主要国家碳排放强度历史变化趋势及相关关系研究[J]. 地球科学进展, 2011, 26(8):859-869.

    ZHANG Zhiqiang, ZENG Jingjing, QU Jiansheng. An analysis of the trends of carbon emission intensity and its relationship with economic development for major countries[J]. Advances in Earth Science, 2011, 26(8):859-869.
    [2]
    韩梦瑶, 刘卫东, 唐志鹏, 夏炎. 世界主要国家碳排放影响因素分析:基于变系数面板模型[J]. 资源科学, 2017, 39(12):2420-2429.

    HAN Mengyao, LIU Weidong, TANG Zhipeng, XIA Yan. Carbon emission impact factor analysis of major countries based on varying coefficient panel modeling[J]. Resources Science, 2017, 39(12):2420-2429.
    [3]
    曾静静, 曲建升, 张志强. 国际温室气体减排情景方案比较分析[J]. 地球科学进展, 2009, 24(4):436-443. doi: 10.3321/j.issn:1001-8166.2009.04.010

    ZENG Jingjing, QU Jiansheng, ZHANG Zhiqiang. Review of the international greenhouse gas emission reduction scenario programs[J]. Advances in Earth Science, 2009, 24(4):436-443. doi: 10.3321/j.issn:1001-8166.2009.04.010
    [4]
    陈菡, 陈文颖, 何建坤. 实现碳排放达峰和空气质量达标的协同治理路径[J]. 中国人口·资源与环境, 2020, 30(10):12-18.

    CHEN Han, CHEN Wenying, HE Jiankun. Pathway to meet carbon emission peak target and air quality standard for China[J]. China Population, Resources and Environment, 2020, 30(10):12-18.
    [5]
    周宝同, 邵俊明, 刘小波, 于晓凤, 刘颖. 重庆市不同功能区建设用地碳排放的库兹涅茨曲线特征分析[J]. 中国岩溶, 2016, 35(6):619-628.

    ZHOU Baotong, SHAO Junming, LIU Xiaobo, YU Xiaofeng, LIU Ying. Characteristics of Kuznets curve to the relationship between construction land expansion and carbon emission intensity in different functional areas of Chongqing[J]. Carsologica Sinica, 2016, 35(6):619-628.
    [6]
    郭芳, 姜光辉, 裴建国, 章程. 广西主要地下河水质评价及其变化趋势[J]. 中国岩溶, 2002(3):44-50, 54.

    GUO Fang, JIANG Guanghui, PEI Jianguo, ZHANG Cheng. Assessment on the water qualities of major subterranean rivers in Guangxi and their changing trend[J]. Carsologica Sinica, 2002(3):44-50, 54.
    [7]
    李涛, 曹建华, 张美良, 黄艳梅, 陈家瑞, 严毅萍, 李光超, 朱晓燕. 桂林盘龙洞岩溶表层带土壤CO2浓度的季节变化研究[J]. 中国岩溶, 2011, 30(3):348-353. doi: 10.3969/j.issn.1001-4810.2011.03.018

    LI Tao, CAO Jianhua, ZHANG Meiliang, HUANG Yanmei, CHEN Jiarui, YAN Yiping, LI Guangchao, ZHU Xiaoyan. The seasonal variation of soil CO2 concentration in epikarst in the Panlong cave, Guilin[J]. Carsologica Sinica, 2011, 30(3):348-353. doi: 10.3969/j.issn.1001-4810.2011.03.018
    [8]
    赵先超, 彭竞霄, 胡艺觉, 张子兮. 基于夜间灯光数据的湖南省县域碳排放时空格局及影响因素研究[J]. 生态科学, 2022, 41(1):91-99. doi: 10.14108/j.cnki.1008-8873.2022.01.011

    ZHAO Xianchao, PENG Jingxiao, HU Yijue, ZHANG Zixi. Spatial-temporal pattern and influence factors of county carbon emissions in Hunan Province based on nightlight data[J]. Ecological Science, 2022, 41(1):91-99. doi: 10.14108/j.cnki.1008-8873.2022.01.011
    [9]
    李强. 水利工程对岩溶水体碳循环的影响[J]. 中国岩溶, 2013, 32(3):253-257. doi: 10.3969/j.issn.1001-4810.2013.03.002

    LI Qiang. Influence of hydraulic project on the carbon cycle in the karst reservoir[J]. Ecological Science, 2013, 32(3):253-257. doi: 10.3969/j.issn.1001-4810.2013.03.002
    [10]
    李莉, 董棒棒, 敬盼. 环境规制背景下新疆能源碳排放峰值预测与情景模拟研究[J]. 生态与农村环境学报, 2020, 36(11):1444-1452.

    LI Li, DONG Bangbang, JING Pan. Prediction and scenario simulation of energy carbon emission peak in Xinjiang under the background of environmental regulation[J]. Journal of Ecology and Rural Environment, 2020, 36(11):1444-1452.
    [11]
    魏媛, 简小玉. 基于碳达峰碳中和的贵州省土地利用碳排放演变及预测研究[J]. 生态经济, 2022, 38(4):108-114.

    WEI Yuan, JIAN Xiaoyu. Research evolution of carbon emissions from land use in Guizhou Province based on carbon peak and carbon neutrality and the according predictions[J]. Ecological Economy, 2022, 38(4):108-114.
    [12]
    马彩虹, 邹淑燕, 赵晶, 文琦, 米文宝. 西北地区能源消费碳排放时空差异分析及地域类型划分[J]. 经济地理, 2016, 36(12):162-168.

    MA Caihong, ZOU Shuyan, ZHAO Jing, WEN Qi, MI Wenbao. Temporal-spatial difference analysis of carbon emission from energy consumption and its regional type division in Northwest China[J]. Economic Geography, 2016, 36(12):162-168.
    [13]
    蔡炳贵, 沈凛梅, 郑伟, 李克普, 白云志, 董春志. 本溪水洞洞穴空气CO2浓度与温、湿度的空间分布和昼夜变化特征[J]. 中国岩溶, 2009, 28(4):348-354. doi: 10.3969/j.issn.1001-4810.2009.04.004

    CAI Binggui, SHEN Linmei, ZHENG Wei, LI Kepu, BAI Yunzhi, DONG Chunzhi. Spatial distribution and diurnal variation in CO2 concentration, temperature and relative humidity of the cave air: A case study from water cave, Benxi, Liaoning, China[J]. Carsologica Sinica, 2009, 28(4):348-354. doi: 10.3969/j.issn.1001-4810.2009.04.004
    [14]
    武娜, 沈镭, 钟帅. 基于夜间灯光数据的晋陕蒙能源消费碳排放时空格局[J]. 地球信息科学学报, 2019, 21(7):1040-1050.

    WU Na, SHEN Lei, ZHONG Shuai. Spatio-temporal pattern of carbon emissions based on nightlight data of the Shanxi-Shaanxi-Inner Mongolia region of China[J]. Journal of Geo-information Science, 2019, 21(7):1040-1050.
    [15]
    牛亚文, 赵先超, 胡艺觉. 基于NPP-VIIRS夜间灯光的长株潭地区县域土地利用碳排放空间分异研究[J]. 环境科学学报, 2021, 41(9):3847-3856.

    NIU Yawen, ZHAO Xianchao, HU Yijue. Spatial variation of carbon emission from county land use in Chang-Zhu-Tan area based on NPP-VIIRS night light[J]. Acta Scientiae Circumstantiae, 2021, 41(9):3847-3856.
    [16]
    莫惠斌, 王少剑. 黄河流域县域碳排放的时空格局演变及空间效应机制[J]. 地理科学, 2021, 41(8): 1324-1335.

    MO Huibin, WANG Shaojian. Spatio-temporal evolution and spatial effect mechanism of carbon emission at county level in the Yellow River Basin[J]. Scientia Geographica Sinica, 2021, 41(8): 1324-1335.
    [17]
    高新才, 韩雪. 黄河流域碳排放的空间分异及影响因素研究[J]. 经济经纬, 2022, 39(1):13-23.

    GAO Xincai, HAN Xue. Study on the spatial differentiation and influencing factors of carbon emissions in the Yellow River Basin[J]. Economic Survey, 2022, 39(1):13-23.
    [18]
    刘华军, 邵明吉, 吉元梦. 中国碳排放的空间格局及分布动态演进: 基于县域碳排放数据的实研究[J]. 地理科学, 2021, 41(11): 1917-1924.

    LIU Huajun, SHAO Mingji, JI Yuanmeng. The spatial pattern and distribution dynamic evolution of carbon emissions in China: Empirical study based on county carbon emission data[J]. Scientia Geographica Sinica, 2021, 41(11): 1917-1924.
    [19]
    张昌兵, 华丽香, 余梅丽. OFDI对中国碳排放的影响: 基于省际空间面板数据的实证检验[J]. 福建江夏学院学报, 2022, 12(2): 9-21.

    ZHANG Changbing, HUA Lixiang, YU Meili. Impact of OFDI on carbon emissions in China: Empirical research based on inter-provincial spatial panel data[J]. Journal of Fujian Jiangxia University 2022, 12(2): 9-21.
    [20]
    王宪恩, 王泳璇, 段海燕. 区域能源消费碳排放峰值预测及可控性研究[J]. 中国人口·资源与境, 2014, 24(8):9-16.

    WANG Xian'en, WANG Yongxuan, DUAN Haiyan. Forecasting area's carbon emissions of energy consumption and controllability study[J]. China's Population, Resources and Environment, 2014, 24(8):9-16.
    [21]
    朱永彬, 王铮, 庞丽, 王丽娟, 邹秀萍. 基于经济模拟的中国能源消费与碳排放高峰预测[J]. 地理学报, 2009, 64(8):935-944. doi: 10.3321/j.issn:0375-5444.2009.08.004

    ZHU Yongbin, WANG Zheng, PANG Li, WANG Lijuan, ZOU Xiuping. Simulation on China's economy and prediction on energy consumption and carbon emission under optimal growth path[J]. Acta Geographica Sinica, 2009, 64(8):935-944. doi: 10.3321/j.issn:0375-5444.2009.08.004
    [22]
    邓小乐, 孙慧. 基于STIRPAT模型的西北五省区碳排放峰值预测研究[J]. 生态经济, 2016, 32(9):36-41. doi: 10.3969/j.issn.1671-4407.2016.09.009

    DENG Xiaole, SUN Hui. Forecast of the northwest five provinces' carbon emissions based on STIRPAT model[J]. Ecological Economy, 2016, 32(9):36-41. doi: 10.3969/j.issn.1671-4407.2016.09.009
    [23]
    张巍. 基于STIRPAT模型的西安市碳足迹预测和情景分析[J]. 生态经济, 2021, 37(4):25-29.

    ZHANG Wei. Prediction and scenario analysis of carbon footprint in Xi'an based on the STIRPAT model[J]. Ecological Economy, 2021, 37(4):25-29.
    [24]
    杨青林, 赵荣钦, 丁明磊, 满洲, 王帅, 余娇, 杨文娟. 中国城市碳排放的空间格局及影响机制:基于285个地级市截面数据的分析[J]. 资源开发与市场, 2018, 34(9):1243-1249. doi: 10.3969/j.issn.1005-8141.2018.09.009

    YANG Qinglin, ZHAO Rongqin, DING Minglei, MAN Zhou, WANG Shuai, YU Jiao, YANG Wenjuan. Spatial pattern and influencing mechanism of urban carbon emission in China: Based on cross-section data of 285 cities[J]. Resource Development & Market, 2018, 34(9):1243-1249. doi: 10.3969/j.issn.1005-8141.2018.09.009
    [25]
    臧宏宽, 杨威杉, 张静, 伍鹏程, 曹丽斌, 许野. 京津冀城市群二氧化碳排放达峰研究[J]. 环境工程, 2020, 38(11):19-24, 77.

    ZANG Hongkuan, YANG Weishan, ZHANG Jing, WU Pengcheng, CAO Libin, XU Ye. Research on carbon dioxide emissions peaking in Beijing-Tianjin-Hebei City agglomeration[J]. Environmental Engineering, 2020, 38(11):19-24, 77.
    [26]
    束兰根, 辛晴. 碳达峰视角下的中国地级以上城市碳排放与经济发展相关性研究[J]. 电子科技大学学报(社科版), 2021, 23(5):1-11.

    SHU Langen, XIN Qing. Research on the relationship between urban carbon emissions and economic development of China from the perspective of carbon peak[J]. Journal of University of Electronic Science and Technology of China (Social Sciences Edition), 2021, 23(5):1-11.
    [27]
    高冠龙, 张小由. 内蒙古碳排放现状及森林碳汇的重要性分析[J]. 中国人口·资源与环境, 2014, 24(Supp.2):24-27.

    GAO Guanlong, ZHANG Xiaoyou. Carbon emission present situation and the analysis of the importance of forest carbon sinks in the Inner Mongolia Autonomous Region[J]. China's Population, Resources and Environment, 2014, 24(Supp.2):24-27.
    [28]
    萨和雅, 罗翔, 王一辰. 基于STIRPAT模型的内蒙古自治区碳排放预测研究[J]. 内蒙古师范大学学报(自然科学汉文版), 2021, 50(4):347-352.

    SA Heya, LUO Xiang, WANG Yichen. Prediction of carbon emission in Inner Mongolia based on STIRPAT model[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2021, 50(4):347-352.
    [29]
    何愿, 张颖, 朱明. 桂江流域地下水污染途径及防控措施研究[J]. 中国岩溶, 2015, 34(4):387-394.

    HE Yuan, ZHANG Ying, ZHU Ming. The pollutant infiltration pathways and measures to control groundwater pollution in the Guijiang river drainage system[J]. Carsologica Sinica, 2015, 34(4):387-394.
    [30]
    张靖妮, 王慧丽. 基于市域尺度的陕西省碳排放空间特征分析[J]. 能源环境保护, 2022, 36(2):96-103.

    ZHANG Jingni, WANG Huili. Spatial characteristics of carbon emission in Shaanxi Province based on city scale[J]. Energy Environmental Protection, 2022, 36(2):96-103.
    [31]
    Stern N. Stern Review: The Economics of Climate Change[M]. Cambridge: Cambridge University Press, 2006.
    [32]
    Han X J, Yu J L, Xia Y, Wang J H, Spatiotemporal characteristics of carbon emissions in energy-enriched areas and the evolution of regional types[J]. Energy Reports, 2021, 7: 7224–7237.
    [33]
    张帆, 徐宁, 吴锋. 共享社会经济路径下中国2020-2100年碳排放预测研究[J]. 生态学报, 2021, 41(24):9691-9704.

    ZHANG Fan, XU Ning, WU Feng. Research on China's CO2 emissions projections from 2020 to 2100 under the shared socioeconomic pathways[J]. Acta Ecologiga Sinica, 2021, 41(24):9691-9704.
    [34]
    钟润涛. 基于居民生活水平与质量的国民经济核算研究[D]. 天津: 天津大学, 2009.

    ZHONG Runtao. Research on national economic accounting based on residential living standard and quality[D]. Tianjin: Tianjin University, 2009.
    [35]
    姜睿. 碳减排−企业实现可持续发展之利器[J]. 企业研究, 2017(2):40-43.
    [36]
    王琪. 基于STIRPAT模型的河北省碳排放峰值预测研究[D]. 北京: 华北电力大学, 2019.

    WANG Qi. Forecast of carbon emission peak in Hebei Province based on STIRPAT model[D]. Beijing: North China Electric Power University, 2019.
    [37]
    杨冬妮, 刘红宇. 产业转型升级对劳动力需求的影响研究:基于广西2009-2018年面板数据分析[J]. 中国商论, 2021(14):185-188.

    YANG Dongni, LIU Hongyu. Research on the impact of industrial transformation and upgrading on labor demand: Based on the panel data of Guangxi from 2009 to 2018[J]. China Journal of Commerce, 2021(14):185-188.
    [38]
    杨丛丛. 双碳目标下广西能源发展的难点及战略分析[J]. 市场论坛, 2021(12):15-19. doi: 10.3969/j.issn.1672-8777.2021.12.004
    [39]
    蒋昀辰, 钟苏娟, 王逸, 黄贤金. 全国各省域碳达峰时空特征及影响因素[J]. 自然资源学报, 2022, 37(5), 1289-1302.

    JIANG Yunchen, ZHONG Sujuan, WANG Yi, HUANG Xianjin. Spatio-temporal characteristics and influencing factors of carbon emission peak by province of China[J]. Journal of Natural Resources, 2022, 37(5), 1289-1302.
    [40]
    尹文嘉, 吕雪贞. 广西生态环境保护与社会经济发展耦合协调度评估[J]. 桂海论丛, 2021, 37(6):71-79. doi: 10.3969/j.issn.1004-1494.2021.06.012
    [41]
    杨丛丛. 碳达峰碳中和目标指引推动广西能源高质量发展[J]. 广西节能, 2022(1):15-18. doi: 10.3969/j.issn.1004-1230.2022.01.007
    [42]
    韩楠, 罗新宇. 多情景视角下京津冀碳排放达峰预测与减排潜力[J]. 自然资源学报, 2022, 37(5): 1277-1288.

    HAN Nan, LUO Xinyu. Carbon emission peak prediction and reduction potential in Beijing-Tianjin-Hebei region from the perspective of multiple scenarios[J]. Journal of Natural Resources, 2022, 37(5): 1277-1288.
    [43]
    杨廷锋. 贵州岩溶地区生态足迹的动态变化研究[J]. 中国岩溶, 2010, 29(2): 155-161.

    YANG Tingfeng. Study on the dynamic change of eco-footprints in Guizhou karst areas[J]. Carsologica Sinica, 2010, 29(2): 155-161.
    [44]
    潘永忠. 关于资源枯竭型城市发展循环经济的思考:以广西合山市煤炭资源型城市为例[J]. 广西轻工业, 2009, 25(9):106-107. doi: 10.3969/j.issn.1003-2673.2009.09.055
    [45]
    蔡卓杰, 卢远, 华璀. 广西县域人口与经济集聚时空演变分析[J]. 地理空间信息, 2016, 14(1):13-16. doi: 10.3969/j.issn.1672-4623.2016.01.004

    CAI Zhuojie, LU Yuan, HUA Cui. Spatial temporal evolution analysis of population and economy agglomeration of Guangxi county[J]. Geospatial Information, 2016, 14(1):13-16. doi: 10.3969/j.issn.1672-4623.2016.01.004
    [46]
    钱开胜. 广西: 新认定22个特色水果示范区[J]. 中国果业信息, 2021, 38(12):53-54.
    [47]
    许小红, 覃爽姿, 阮柱, 甘永萍. 县域休闲农业旅游资源开发格局及优化策略研究:以广西为例[J]. 南宁师范大学学报(自然科学版), 2021, 38(3):102-113.

    XU Xiaohong, QIN Shuangzi, RUAN Zhu, GAN Yongping. Research into the development pattern and optimization strategy of leisure agricultural tourism resources in county areas: A case study of Guangxi Province[J]. Journal of Nanning Normal University (Natural Science Edition), 2021, 38(3):102-113.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (162) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return