• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 42 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
RAO Hanyun, DONG Faqin, LIU Mingxue, AN Dejun, DAI Qunwei, LI Qiongfang, ZHANG Qiang, LIU Yifan, LIU Zeling, ZHANG Yuting. Changes and driving factors of psychrophilic diatom community structure of algal mats in Huanglong Scenic Area[J]. CARSOLOGICA SINICA, 2023, 42(3): 482-494. doi: 10.11932/karst20230301
Citation: RAO Hanyun, DONG Faqin, LIU Mingxue, AN Dejun, DAI Qunwei, LI Qiongfang, ZHANG Qiang, LIU Yifan, LIU Zeling, ZHANG Yuting. Changes and driving factors of psychrophilic diatom community structure of algal mats in Huanglong Scenic Area[J]. CARSOLOGICA SINICA, 2023, 42(3): 482-494. doi: 10.11932/karst20230301

Changes and driving factors of psychrophilic diatom community structure of algal mats in Huanglong Scenic Area

doi: 10.11932/karst20230301
  • Received Date: 2022-10-12
  • Huanglong Scenic Area, located in Songpan county, Sichuan Province, China, is listed as the World Natural Heritage, and is covered with travertine landscape at an altitude of about 3,145-3,588 m. With the plateau temperate sub-frigid monsoon climate, the melt water from snow mountains, the atmospheric precipitation and the underground karst water are the main water sources of Huanglong Scenic Area. In addition, covered by ice and snow at extremely low temperatures, Huanglong Scenic Area has a half-year-long freezing period with an annual average temperature of only 1.1℃. A large number of algae, mainly psychrophilic diatoms, grow in the water coverage of the travertine deposition area in the scenic area. The diatom community, an indicator of water quality change, is very sensitive to environmental changes in natural rivers. At present, there are still few studies related to this alpine karst area. In order to explore the structure of algal mats as well as the relationship between the community structure of psychrophilic diatoms in algal mats and environmental variables in Huanglong Scenic Area, we analyzed water samples and algae mats from 8 typical scenic spots in October 2021. The water temperature (T), pH and conductivity (Ec) as well as the concentrations of ${\rm{HCO}}_3^{-}$ and ${\rm{CO}}_3^{2-}$ of the sampling points were measured on site. At the same time, the geographic data of the sampling points were recorded. The concentrations of dissolved silicon (Dsi), cations (Ca2+, Mg2+, Al3+, K+), anions (Cl, ${\rm{NO}}_3^{-}$, ${\rm{SO}}_4^{2-}$), TN and TP were determined in the laboratory. The structural compositions of the algal mats and the characteristics of the diatom community structure were analyzed. The main driving factors affecting the water of Huanglong Scenic Area were judged by Principal Component Analysis (PCA), and one of the two environmental variables with greater correlation was eliminated by Spearman Correlation Analysis. After Detrend Correspondence Analysis (DCA) of diatom species abundance in algal mats, Redundancy Analysis (RDA) was selected to analyze the relationship between environmental variables and diatom communities. The results show that the concentrations of Ca2+ and ${\rm{HCO}}_3^{-}$ in the waterbody is high, and water mainly belongs to the HCO3-Ca type, followed by the HCO3-Ca-Mg type. The algal mats are mainly composed of travertine particles, filamentous algae and diatoms. The study area is an alpine karst micro-ecosystem with travertine as the base and filamentous algae as the skeleton, inhabiting a large number of diatoms. 72 species of diatoms from 25 genera are identified from algal mats, among which 16 species have a total relative abundance greater than 2%. The genus Cymbella (14 species), Diatoma. (8 species), Cymbopleura (7 species), Caloneis (4 species) and Synedra (4 species) contribute the most. There are 13 dominant species of diatoms in Huanglong Scenic Area. 4 species from the genus Cymbella have absolute advantage (Ytotal = 0.132) at the genus level. At the species level, there is little difference in the dominance index of each dominant species (0.023≤Y≤0.053), among which the dominance index of Diatoma vulgaris is the largest, and that of Cymbopleura linearis is the smallest. In terms of the diversity index, there are some differences in the Shannon-Weiner index, Simpson diversity index and Pielou index at various sampling points. As the altitude decreases, the diversity index from #1 to #8 fluctuates, rising and then falling repeatedly. This may be related to the water circulation system of Huanglong Scenic Area. The analyses of the relationship between environmental variables and diatom communities by RDA show that the eigenvalues of the first two axes are 0.43 and 0.24, respectively, explaining 67.68% of the cumulative variance of data about diatom community species. The correlation between environmental variables and diatom community structure in algal mats is T>DSi>pCO2>TN> Mg2+>Ca2+>altitude, and the three environmental variables of Cl, ${\rm{NO}}_3^{-}$ and ${\rm{SO}}_4^{2-}$ are excluded because of the low correlations. The significance test of the influence degree of each factor by Monte Carlo test finds that T (F=2.8, P=0.02) and DSi (F=2.3, P=0.04) are environmental variables that significantly affect the algae community structure of the algal mats. In addition, although TN is not the most significant driving factor affecting diatoms of the algal mats in Huanglong Scenic Area, there is a trend of eutrophication in the waterbody of the scenic spot, which will affect the algal community structure, so TN may be a potential driving factor. The above conclusions can provide a basis for the establishment of the diatom species bank in Huanglong Scenic Area and the monitoring and management of the river water environment in the plateau karst area.

     

  • loading
  • [1]
    傅华龙, 韩福山, 周绪纶, 刘子福. 四川黄龙钙华景观中的藻类植物[J]. 资源开发与保护, 1989(3):40-41, 44.

    FU Hualong, HAN Fushan, ZHOU Xulun, LIU Zifu. Algae in the travertine landscape of Huanglong, Sichuan[J]. Resource Development and Protection, 1989(3):40-41, 44.
    [2]
    汪智军, 殷建军, 郝秀东, 王培, 张强, 蓝高勇, 张清明. 基于微岩相分析的藻类在钙华沉积中的作用研究: 以四川黄龙为例[J]. 中国岩溶, 2021, 40(1):44-54.

    WANG Zhijun, YIN Jianjun, HAO Xiudong, WANG Pei, ZHANG Qiang, LAN Gaoyong, ZHANG Qingming. Role of algae in travertine deposition revealed by microscale observations: A case study of Huanglong, Sichuan, China[J]. Carsologica Sinica, 2021, 40(1):44-54.
    [3]
    Lavoie I, Campeau S, Zugic-Drakulic N, Winter J G, Fortin C. Using diatoms to monitor stream biological integrity in Eastern Canada: An overview of 10 years of index development and ongoing challenges[J]. Science of the Total Environment, 2014, 475:187-200. doi: 10.1016/j.scitotenv.2013.04.092
    [4]
    Ramkumar M, Kumaraswamy K, Mohanraj R. Environmental management of river basin ecosystems[M]. Berlin: Springer, 2015.
    [5]
    Wang HJ, Yan H, Liu ZH. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine, China: Implications for paleoclimatic interpretations[J]. Geochimica et Cosmochimica Acta, 2014, 125:34-48. doi: 10.1016/j.gca.2013.10.001
    [6]
    Wang HJ, Liu ZH, Zhang JL, Sun HL, An DJ, Fu RX, Wang XP. Spatial and temporal hydrochemical variations of the spring-fed travertine-depositing stream in the Huanglong Ravine, Sichuan, SW China[J]. Acta Carsologica 2010, 39(2): 247-259.
    [7]
    雷婷婷, 陈良仲, 陈绍兴, 沈亮. 微生物对低温极端环境适应性的研究进展[J]. 微生物学报, 2022, 62(6):2150-2164.

    LEI Tingting, CHEN Liangzhong, CHEN Shaoxing, SHEN Liang. Progress in research on the adaptability of microorganisms to extremely cold environments[J]. Acta Microbiologica Sinica, 2022, 62(6):2150-2164.
    [8]
    Stanish L F, Nemergut D R, Mcknight D M. Hydrologic processes influence diatom community composition in Dry Valley streams[J]. Journal of the North American Benthological Society, 2011, 30(4):1057-1073. doi: 10.1899/11-008.1
    [9]
    Frantz C, Petryshyn V, Corsetti F. Grain trapping by filamentous cyanobacterial and algal mats: Implications for stromatolite microfabrics through time[J]. Geobiology, 2015, 13(5):409-423. doi: 10.1111/gbi.12145
    [10]
    Gushulak C A, Laird K R, Bennett J R, Cumming B F. Water depth is a strong driver of intra-lake diatom distributions in a small boreal lake[J]. Journal of Paleolimnology, 2017, 58(2):231-241. doi: 10.1007/s10933-017-9974-y
    [11]
    Bojorge-García M, Carmona J, Ramírez R. Species richness and diversity of benthic diatom communities in tropical mountain streams of Mexico[J]. Inland Waters, 2014, 4(3):279-292. doi: 10.5268/IW-4.3.568
    [12]
    Zhang Yun, Peng Chengrong, Wang Jun, Huang Shun, Hu Yao, Zhang Jinli, Li Dunhai. Temperature and silicate are significant driving factors for the seasonal shift of dominant diatoms in a drinking water reservoir[J]. Journal of Oceanology and Limnology, 2019, 37(2):568-579. doi: 10.1007/s00343-019-8040-1
    [13]
    Bae H, Park J, Ahn H, Khim J S. Shift in benthic diatom community structure and salinity thresholds in a hypersaline environment of solar saltern, Korea[J]. Algae, 2020, 35(4):361-373. doi: 10.4490/algae.2020.35.12.4
    [14]
    Fouke B W. Hot-spring systems geobiology: Abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA[J]. Sedimentology, 2011, 58(1):170-219. doi: 10.1111/j.1365-3091.2010.01209.x
    [15]
    郝卓, 高扬, 张晴雯, 熊佰炼. 典型喀斯特流域旱雨季交替下溶解硅的输送特征[J]. 生态学报, 2021, 41(24):9681-9690.

    HAO Zhuo, GAO Yang, ZHANG Qingwen, XIONG Bailian. Characteristics of dissolved silicon transport in typical karst watershed in alternating wet and dry season[J]. Acta Ecologica Sinica, 2021, 41(24):9681-9690.
    [16]
    杨诗笛, 吴攀, 曹星星, 刘闪, 廖家豪. 岩溶湿地表层水体CO2分压时空分布特征及其扩散通量[J]. 湖泊科学, 2021, 33(3):854-865. doi: 10.18307/2021.0318

    YANG Shidi, WU Pan, CAO Xingxing, LIU Shan, LIAO Jiahao. Spatiotemporal distribution of carbon dioxide partial pressure and its diffusion flux in surface water of karst wetland[J]. Journal of Lake Sciences, 2021, 33(3):854-865. doi: 10.18307/2021.0318
    [17]
    张纪晖, 周成旭, 李冬玲, 林忠洲, 邱悦, 沙龙滨. 福建敖江口表层沉积硅藻空间分布特征[J]. 热带亚热带植物学报, 2021, 29(6):597-604.

    ZHANG Jihui, ZHOU Chengxu, LI Dongling, LIN Zhongzhou, QIU Yue, SHA Longbin. Diatom distribution in surface sediments of Aojiang river estuary in Fujian, China[J]. Journal of Tropical and Subtropical Botany, 2021, 29(6):597-604.
    [18]
    Round F E, Crawford R M, Mann D G. Diatoms: Biology and morphology of the genera[M]. Cambrige: Cambridge University Press, 1990.
    [19]
    胡鸿钧, 魏印心. 中国淡水藻类: 系统、分类及生态[M]. 北京: 科学出版社, 2006.

    HU Hongjun, WEI Yinxin. The freshwater algae of China: Systematics, taxonomy and ecology[M]. Beijing: Science Press, 2006.
    [20]
    施之新. 中国淡水藻志: 第十六卷, 硅藻门, 桥弯藻科[M]. 北京: 科学出版社, 2013.

    SHI Zhixin. Flora Algarum Sinicarum Aquae Dulcis: Timus 16, Bacillariophyta, Cymbellaceae[M]. Beijing: Science Press, 2013.
    [21]
    李家英, 齐雨藻. 中国淡水藻志: 第十四卷, 硅藻门, 舟形藻科(Ⅰ)[M]. 北京: 科学出版社, 2010.

    LI Jiaying, QI Yuzao. Flora Algarum Sinicarum Aquae Dulcis: Timus 14, Bacillariophyta, Naviculaceae (I)[M]. Beijing: Science Press, 2010.
    [22]
    李家英, 齐雨藻. 中国淡水藻志: 第十九卷, 硅藻门, 舟形藻科(Ⅱ)[M]. 北京: 科学出版社, 2014.

    LI Jiaying, QI Yuzao. Flora Algarum Sinicarum Aquae Dulcis: Timus 19, Bacillariophyta, Naviculaceae (Ⅱ)[M]. Beijing: Science Press, 2014.
    [23]
    Spaulding S A, Potapova M G, Bishop I W, Lee S S, Gasperak T S, Jovanoska E, Furey P C, Edlund M B. Diatoms. org: Supporting taxonomists, connecting communities[J]. Diatom Research, 2021, 36(4):291-304. doi: 10.1080/0269249X.2021.2006790
    [24]
    吴瑞, 高亚辉, 蓝东兆, 兰彬斌, 方琦. 象山港底栖硅藻群落结构特征[J]. 热带作物学报, 2016, 37(3):439-445.

    WU Rui, GAO Yahui, LAN Dongzhao, LAN Binbin, FANG Qi. The benthic diatom community of Xiangshan bay[J]. Chinese Journal of Tropical Crops, 2016, 37(3):439-445.
    [25]
    谢纯林, 王涛, 胡俊杰, 阎春兰, 裴国凤. 赤水河流域秋季底栖硅藻群落结构特征及水质评价[J]. 水生态学杂志, 2022, 43(6):43-50.

    XIE Chunlin, WANG Tao, HU Junjie, YAN Chunlan, PEI Guofeng. Autumn benthic diatom community structure and water quality assessment in the Chishui river basin[J]. Journal of Hydroecology, 2022, 43(6):43-50.
    [26]
    刘嘉钧, 罗洁, 岳素伟, 徐亚兰. “黄蜂石”的矿物成分及谱学特征研究[J]. 光谱学与光谱分析, 2021, 41(6):1936-1941.

    LIU Jiajun, LUO Jie, YUE Suwei, XU Yalan. Study on the mineral composition and spectral characteristics of "Bumblebee Stone"[J]. Spectroscopy and Spectral Analysis, 2021, 41(6):1936-1941.
    [27]
    张钰, 李杰庆, 李涛, 刘鸿高, 王元忠. 不同部位矿质元素与红外光谱数据融合对美味牛肝菌产地溯源研究[J]. 光谱学与光谱分析, 2018, 38(10):3070-3076.

    ZHANG Yu, LI Jieqing, LI Tao, LIU Honggao, WANG Yuanzhong. Discrimination of geographical origins of boletus edulis using data fusion combined mineral elements with FTIR spectrum of different parts[J]. Spectroscopy and Spectral Analysis, 2018, 38(10):3070-3076.
    [28]
    董发勤, 代群威, 饶瀚云, 王富东, 赵学钦, 蒋忠诚, 张强, 李博文, Alexander I. Malov, Enrico Capezzuoli, Augusto Auler. 黄龙与黄石钙华微生物沉积作用比较研究[J]. 中国岩溶, 2021, 40(2):264-272.

    DONG Faqin, DAI Qunwei, RAO Hanyun, WANG Fudong, ZHAO Xueqin, JIANG Zhongcheng, ZHANG Qiang, LI Bowen, Alexander I. Malov, Enrico Capezuoli, Augusto Auler. Comparative study on microbial deposition of travertine in Huanglong Scenic Area and Yellowstone National Park[J]. Carsologica Sinica, 2021, 40(2):264-272.
    [29]
    Tsai D D W, Chen P H, Ramaraj R. The potential of carbon dioxide capture and sequestration with algae[J]. Ecological Engineering, 2017, 98:17-23. doi: 10.1016/j.ecoleng.2016.10.049
    [30]
    Iwasaki K, Evenhuis C, Tamburic B, Kuzhiumparambil U, O'Connor W, Ralph P, Szabó M. Improving light and CO2 availability to enhance the growth rate of the diatom, Chaetoceros muelleri[J]. Algal Research, 2021, 55:102234. doi: 10.1016/j.algal.2021.102234
    [31]
    Gomez F J, Mlewski C, Boidi F J, Farías M E, Gérard E. Calcium carbonate precipitation in diatom-rich microbial mats: The Laguna Negra hypersaline lake, Catamarca, Argentina[J]. Journal of Sedimentary Research, 2018, 88(6):727-742. doi: 10.2110/jsr.2018.37
    [32]
    Kuypers M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5):263-276. doi: 10.1038/nrmicro.2018.9
    [33]
    马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望[J]. 地球科学进展, 2018, 33(11):1130-1141. doi: 10.11867/j.issn.1001-8166.2018.11.1130.

    MA Qianhong, ZHANG Keli. Progresses and prospects of the research on soil erosion in karst area of Southwest China[J]. Advances in Earth Science, 2018, 33(11):1130-1141. doi: 10.11867/j.issn.1001-8166.2018.11.1130.
    [34]
    孙亚玲, 刘进琪, 邹松兵. 渭河上游浮游植物群落结构对空间环境响应的差异性研究[J]. 水利水电技术, 2019, 50(7):144-152.

    SUN Yaling, LIU Jinqi, ZOU Songbing. Study on difference of response from phytoplankton community structure to spatial environment in upper Weihe river[J]. Water Resources and Hydropower Engineering, 2019, 50(7):144-152.
    [35]
    Phartiyal B, Singh R, Nag D, Sharma A, Agnihotri R, Prasad V, Yao T, Yao P, Karthick B, Joshi P, Gahlaud S K, Thakur B. Reconstructing climate variability during the last four millennia from trans-Himalaya (Ladakh-Karakoram, India) using multiple proxies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562:110142. doi: 10.1016/j.palaeo.2020.110142
    [36]
    杨宋琪, 杨江山, 陈成, 祖廷勋, 罗光宏. 张掖黑河湿地附植硅藻群落初步研究:以张掖国家湿地公园为例[J]. 水生态学杂志, 2020, 41(3):77-84.

    YANG Songqi, YANG Jiangshan, CHEN Cheng, ZU Tingxun, LUO Guanghong. A preliminary study on the epiphytic diatom community in Zhangye Heihe Wetland: A case study of Zhangye National Wetland Park[J]. Journal of Hydroecology, 2020, 41(3):77-84.
    [37]
    薛浩, 王业耀, 孟凡生, 郑丙辉, 张铃松, 程佩瑄. 汤旺河着生硅藻群落及其与环境因子的关系[J]. 环境科学, 2020, 41(3):1256-1264. doi: 10.13227/j.hjkx.201907182

    XUE Hao, WANG Yeyao, MENG Fansheng, ZHENG Binghui, ZHANG Lingsong, CHENG Peixuan. Community of benthic diatoms and their relationship with aquatic environmental factors in the Tangwang river, China[J]. Environmental Science, 2020, 41(3):1256-1264. doi: 10.13227/j.hjkx.201907182
    [38]
    米文梅, 施军琼, 杨燕君, 杨宋琪, 何书晗, 吴忠兴. 三峡库区支流梅溪河附石藻类群落变化及其与环境因子的关系[J]. 环境科学, 2020, 41(4):1636-1647.

    MI Wenmei, SHI Junqiong, YANG Yanjun, YANG Songqi, HE Shuhan, WU Zhongxing. Changes in epilithic algae community and its relationship with environmental factors in the Meixi river, a tributary of the Three Gorges Reservoir[J]. Environmental Science, 2020, 41(4):1636-1647.
    [39]
    Potapova M, Charles D F. Diatom metrics for monitoring eutrophication in rivers of the United States[J]. Ecological Indicators, 2007, 7(1):48-70. doi: 10.1016/j.ecolind.2005.10.001
    [40]
    刘馨泽, 孙东, 曹楠, 袁楠楠, 黄何平, 田长宝, 张清明, 唐淑, 李大猛, 周大吉, 董发勤. 黄龙核心景区多层级水循环系统结构研究[J]. 中国岩溶, 2021, 40(1):19-33.

    LIU Xinze, SUN Dong, CAO Nan, YUAN Nannan, HUANG Heping, TIAN Changbao, ZHANG Qingming, TANG Shu, LI Dameng, ZHOU Daji, DONG Faqin. Study on the structure of multi-layer water circulation system in the core scenic spot of Huanglong[J]. Carsologica Sinica, 2021, 40(1):19-33.
    [41]
    代群威, 党政, 彭启轩, 董发勤, 李琼芳, 罗尧东, 王富东, 赵学钦, 安德军, 张清明. 钙华天然海绵地质体多孔特性及其对水循环调节意义:以四川黄龙为例[J]. 矿物学报, 2019, 39(2):219-225.

    DAI Qunwei, DANG Zheng, PENG Qixuan, DONG Faqin, LI Qiongfang, LUO Yaodong, WANG Fudong, ZHAO Xueqin, AN Dejun, ZHANG Qingming. Porosity of travertine natural sponge geological bodies and its significance in regulating water circulation: A case study of travertine at Huanglong Ravine, Sichuan Province, China[J]. Acta Mineralogica Sinica, 2019, 39(2):219-225.
    [42]
    董艳红, 王火焰, 周健民, 任正文. 不同土壤钾素淋溶特性的初步研究[J]. 土壤, 2014, 46(2):225-231. doi: 10.13758/j.cnki.tr.2014.02.005

    DONG Yanhong, WANG Huoyan, ZHOU Jianmin, REN Zhengwen. Preliminary study on potassium leaching characteristics of different soils[J]. Soils, 2014, 46(2):225-231. doi: 10.13758/j.cnki.tr.2014.02.005
    [43]
    OUYANG Lili, PAN Yangdong, HUANG Chengmin, TANG Ya, DU Jie, XIAO Weiyang. Water quality assessment of benthic diatom communities for water quality in the subalpine karstic lakes of Jiuzhaigou, a world heritage site in China[J]. Journal of Mountain Science, 2016, 13(9):1632-1644. doi: 10.1007/s11629-014-3392-7
    [44]
    Field C B, Behrenfeld M J, Randerson J T, Falkowski P. Primary production of the biosphere: Integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374):237-240. doi: 10.1126/science.281.5374.237
    [45]
    Sun Xiuming, Wu Naicheng, Faber Claas, Fohrer Nicola. Effects of hydrological variables on structuring morphological trait (cell size) of diatom community in a lowland river[J]. Ecological Indicators, 2018, 94:207-217. doi: 10.1016/j.ecolind.2018.06.044
    [46]
    张存凯, 李琼芳, 唐淑, 张清明, 陈超, 吕治州, 张文静. 影响黄龙藻类群落结构的环境因子分析[J]. 环境科学研究, 2017, 30(2):224-231. doi: 10.13198/j.issn.1001-6929.2017.01.36

    ZHANG Cunkai, LI Qiongfang, TANG Shu, ZHANG Qingming, CHEN Chao, LV Zhizhou, ZHANG Wenjing. Effects of environmental factors on algal community structure in Huanglong Scenic Area[J]. Research of Environmental Sciences, 2017, 30(2):224-231. doi: 10.13198/j.issn.1001-6929.2017.01.36
    [47]
    Lin YJ, He ZL, Yang YG, Stoffella PJ, Phlips EJ, Powell CA. Nitrogen versus phosphorus limitation of phytoplankton growth in Ten Mile Creek, Florida, USA[J]. Hydrobiologia, 2008, 605(1):247-258. doi: 10.1007/s10750-008-9360-x
    [48]
    蒋忠诚, 代群威, 董发勤, 张强, 党政, 汪智军, 刘凡. 国内外钙华岩溶景观的研究进展与展望[J]. 中国岩溶, 2021, 40(1):4-10.

    JIANG Zhongcheng, DAI Qunwei, DONG Faqin, ZHANG Qiang, DANG Zheng, WANG Zhijun, LIU Fan. Review of research progress and prospect of tufa/travertine karst landscape at home and abroad[J]. Carsologica Sinica, 2021, 40(1):4-10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (104) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return