Citation: | LIU Yuanqing, ZHOU Le, WANG Xinfeng, LV Lin, LU Xiaohui, YU Kaining, ZHANG Weifeng. Hydrogeological structure model of the fault zone in the karst area of north China[J]. CARSOLOGICA SINICA, 2022, 41(6): 975-985. doi: 10.11932/karst20220609 |
[1] |
Wibberley C A J, Shimamoto T. Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan[J]. Journal of Structural Geology, 2003, 25(1):59-78. doi: 10.1016/S0191-8141(02)00014-7
|
[2] |
Singhal B B S, Gupta R P. Applied Hydrogeology of Fractured Rocks (second edition)[M]. Springer, 2010: 1-408.
|
[3] |
Childs C, Watterson J, Walsh J J. A model for the structure and development of fault zones[J]. Journal of the Geological Society, 1996, 153:337-340. doi: 10.1144/gsjgs.153.3.0337
|
[4] |
Tondi E, Cilona A, Agosta F, Aydin A, Rustichelli A, Renda P, Giunta G. Growth processes, dimensional parameters and scaling relationships of two conjugate sets of compactive shear bands in porous carbonate grainstones, Favignana Island, Italy[J]. Journal of Structural Geology, 2012, 37:53-64. doi: 10.1016/j.jsg.2012.02.003
|
[5] |
Faulkner D R, Jackson C A L, Lunn R J, Schlische R W, Wibberley C A J, Withjack M O. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones[J]. Journal of Structural Geology, 2010, 32:1557-1575. doi: 10.1016/j.jsg.2010.06.009
|
[6] |
Aydin A. Fractures, faults, and hydrocarbon entrapment, migration and flow[J]. Marine & Petroleum Geology, 2000, 17(7):797-814.
|
[7] |
付晓飞, 许鹏, 魏长柱, 吕延防. 张性断裂带内部结构特征及油气运移和保存研究[J]. 地学前缘, 2012, 19(6):200-212.
FU Xiaofei, XU Peng, WEI Changzhu, LV Yanfang. Internal structure of normal fault zone and hydrocarbon migration[J]. Earth Science Frontiers, 2012, 19(6):200-212.
|
[8] |
Douglas M, Clark I D, Raven K, Bottomley D. Groundwater mixing dynamics at a Canadian Shield mine[J]. Journal of Hydrology, 2000, 235(1-2):88-103. doi: 10.1016/S0022-1694(00)00265-1
|
[9] |
Dockrill B, Shipton Z K. Structural controls on leakage from a natural CO2 geologic storage site: Central Utah, U. S. A.[J]. Journal of Structural Geology, 2010, 32(11):1768-1782. doi: 10.1016/j.jsg.2010.01.007
|
[10] |
Person M, Banerjee A, Hofstra A, Sweetkind D, Gao Y. Hydrologic models of modern and fossil geothermal systems in the Great Basin: Genetic implications for epithermal Au-Ag and Carlin-type gold deposits[J]. Geosphere, 2008, 4(5):888-917. doi: 10.1130/GES00150.1
|
[11] |
Bense V F, Gleeson T, Loveless S E, Bour O, Scibek J. Fault zone hydrogeology[J]. Earth-Science Reviews, 2013, 127:171-192. doi: 10.1016/j.earscirev.2013.09.008
|
[12] |
宋佳佳, 孙建孟, 王敏, 傅爱兵, 高建申. 断层内部结构研究进展[J]. 地球物理学进展, 2018, 33(5):1956-1966.
SONG Jiajia, SUN Jianmeng, WANG Min, FU Aibing, GAO Jianshen. Research progress in the internal structure of the fault[J]. Progress in Geophysics, 2018, 33(5):1956-1966.
|
[13] |
Wibberley C A J, Kurt W, Imber J. The internal structure of fault zones: Implications for mechanical and fluid-flow properties[M]. Geological Society, 2008: 1-367.
|
[14] |
Bense V F, Shipton Z K, Kremer Y, Kampman N. Fault zone hydrogeology: Introduction to the special issue[J]. Geofluids, 2016, 16(4):655-657. doi: 10.1111/gfl.12205
|
[15] |
Giwelli A, Delle Piane C, Esteban L, Clennell M B, Dautriat J, Raimon J, Kager S, Kiewiet L. Laboratory observations of fault transmissibility alteration in carbonate rock during direct shearing[J]. Geofluids, 2016, 16(4):658-672. doi: 10.1111/gfl.12183
|
[16] |
Scibek J, Gleeson T, Mckenzie J M. The biases and trends in fault zone hydrogeology conceptual models: global compilation and categorical data analysis[J]. Geofluids, 2016(4):782-798.
|
[17] |
付广, 李世朝, 杨德相. 断裂输导油气运移形式分布区预测方法及其应用[J]. 沉积学报, 2017, 35(3):592-599.
FU Guang, LI Shichao, YANG Dexiang. A method forecasting distribution areas of fault transporting oil-gas migration and its application[J]. Acta Sedimentologica Sinica, 2017, 35(3):592-599.
|
[18] |
付晓飞, 方德庆, 吕延防, 付广, 孙永河. 从断裂带内部结构出发评价断裂垂向封闭性的方法[J]. 地球科学, 2005, 30(3):328-336.
FU Xiaofei, FANG Deqing, LV Yanfang, FU Guang, SUN Yonghe. Method of evaluating vertical sealing of faults in terms of the internal structure of fault zones[J]. Earth Science, 2005, 30(3):328-336.
|
[19] |
吴智平, 陈伟, 薛雁, 宋国奇, 刘惠民. 断裂带的结构特征及其对油气的输导和封堵性[J]. 地质学报, 2010, 84(4):570-578.
WU Zhiping, CHEN Wei, XUE Yan, SONG Guoqi, LIU Huimin. Structural characteristics of faulting zone and its ability in transporting and sealing oil and gas[J]. Acta Geologica Sinica, 2010, 84(4):570-578.
|
[20] |
潘晓东, 曾洁, 任坤, 焦友军, 彭聪, 兰干江. 贵州毕节岩溶斜坡地带地下水赋存规律与钻探成井模式[J]. 地球学报, 2018, 39(5):606-612.
PANG Xiaodong, ZENG Jie, REN Kun, JIAO Youjun, PENG Cong, LAN Ganjiang. Groundwater occurrence characteristics and drilling well models in karst slope zone, Bijie, Guizhou Province[J]. Acta Geoscientica Sinica, 2018, 39(5):606-612.
|
[21] |
Yamashita T, Tsutsumi A. Involvement of fluids in earthquake ruptures[M]. Springer Japan, 2018: 1-185.
|
[22] |
Butler C A, Holdsworth R E, Strachan R A. Evidence for Caledonian sinistral strikeslip motion and associated fault zone weakening, Outer Hebrides Fault Zone, Scotland[J]. Journal of the Geological Society, 1995, 152(5):743-746. doi: 10.1144/gsjgs.152.5.0743
|
[23] |
Schulz S E, Evans J P. Spatial variability in microscopic deformation and composition of the Punchbowl fault, Southern California: Implications for mechanisms, fluid–rock interaction, and fault morphology[J]. Tectonophysics, 1998, 295(1-2):223-244. doi: 10.1016/S0040-1951(98)00122-X
|
[24] |
Chester F M, Friedman M, Logan J M. Foliated cataclasites[J]. Tectonophysics, 1985, 111(1-2):139-146. doi: 10.1016/0040-1951(85)90071-X
|
[25] |
Jefferies S P, Holdsworth R E, Wibberley C A J, Shimamoto T, Spiers C J, Niemeijer A R, Lloyd G E. The nature and importance of phyllonite development in crustal-scale fault cores: An example from the Median Tectonic Line, Japan[J]. Journal of Structural Geology, 2006, 28(2):220-235. doi: 10.1016/j.jsg.2005.10.008
|
[26] |
Faulkner D R, Lewis A C, Rutter E H. On the internal structure and mechanics of large strike-slip fault zones: Field observations of the Carboneras fault in Southeastern Spain[J]. Tectonophysics, 2003, 367:235-251. doi: 10.1016/S0040-1951(03)00134-3
|
[27] |
Chester F M, Logan J M. Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California[J]. Pure Applied Geophysics, 1986, 124(1-2):79-106. doi: 10.1007/BF00875720
|
[28] |
Caine J S, James P E, Craig B F. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11):1025-1028. doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
|
[29] |
Gudmundsson A, Berg S S, Lyslo K B, Skurtveit E. Fracture networks and fluid transport in active fault zones[J]. Journal of Structural Geology, 2001, 23(2):343-353.
|
[30] |
Caine J S, Bruhn R L, Craig B F. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada[J]. Journal of Structural Geology, 2010, 32:1576-1589. doi: 10.1016/j.jsg.2010.03.004
|
[31] |
James P E, Craig B F, Jame V G. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones[J]. Journal of Structural Geology, 1997, 19(11):1393-1404. doi: 10.1016/S0191-8141(97)00057-6
|
[32] |
罗胜元, 何生, 王浩. 断层内部结构及其对封闭性的影响[J]. 地球科学进展, 2012, 27(2):154-164.
LUO Shengyuan, HE Sheng, WANG Hao. Review on fault internal structure and the influence on fault sealing ability[J]. Advances in Earth Science, 2012, 27(2):154-164.
|
[33] |
Bruhn R L, Parry W T, Yonkee W A, Thompson T. Fracturing and hydrothermal alteration in normal fault zones[J]. Pure& Applied Geophysics, 1994, 142(3):609-644.
|
[34] |
Scholz C H. Wear and gouge formation in brittle faulting[J]. Geology, 1987, 15(6):493-495. doi: 10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2
|
[35] |
Hull J. Thickness-displacement relationships for deformation zones[J]. Journal of Structural Geology, 1988, 10(4):431-435. doi: 10.1016/0191-8141(88)90020-X
|
[36] |
Wibberley C A J, Petit J P, Rives T. Micromechanics of shear rupture and the control of normal stress[J]. Journal of Structural Geology, 2000, 22(4):411-427. doi: 10.1016/S0191-8141(99)00158-3
|
[37] |
Chester F M, Evans J P, Biegel R L. Internal structure and weakening mechanisms of the San-Andreas fault[J]. Journal of Geophysical Research Atmospheres, 1993, 98(B1):771-786. doi: 10.1029/92JB01866
|
[38] |
Caine J S, Forster C B. Fault zone architecture and fluid flow: Insights from field data and numerical modeling[C]// Haneberg W C, Mozley P S, Moore J C. Faults and Subsurface Fluid Flow in the Shallow Crust. Washington DC, AGU, 1999: 101–127.
|
[39] |
Darnault C J G. Overexploitation and contamination of shared groundwater resources [M]. Netherland: Nato Security Through Science, 2011: 203–226.
|
[40] |
王焰新. 我国北方岩溶泉域生态修复策略研究: 以晋祠泉为例[J]. 中国岩溶, 2022, 41(3):331-344.
WANG Yanxin. Study on ecological restoration strategy of karst spring region in North China: Taking Jinci spring as an example[J]. Carsologica Sinica, 2022, 41(3):331-344.
|
[41] |
梁永平, 王维泰, 赵春红, 王玮, 唐春雷. 中国北方岩溶水变化特征及其环境问题[J]. 中国岩溶, 2013, 32(1):34-42.
LIANG Yongping, WANG Weitai, ZHAO Chunhong, WANG Wei, TANG Chunlei. Variations of karst water and environmental problems in North China[J]. Carsologica Sinica, 2013, 32(1):34-42.
|
[42] |
梁永平, 申豪勇, 赵春红, 王志恒, 唐春雷, 赵一, 谢浩, 石维芝. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶, 2021, 40(3):363-380.
LIANG Yongping, SHEN Haoyong, ZHAO Chunhong, WANG Zhiheng, TANG Chunlei, ZHAO Yi, XIE Hao, SHI Weizhi. Thinking and practice on the research direction of karst water in northern China[J]. Carsologica Sinica, 2021, 40(3):363-380.
|
[43] |
高旭波, 王万洲, 侯保俊, 高列波, 张建友, 张松涛, 李成城, 姜春芳. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3):287-298.
GAO Xubo, WANG Wanzhou, HOU Baojun, GAO Liebo, ZHANG Jianyou, ZHANG Songtao, LI Chengcheng, JIANG Chunfang. Analysis of karst groundwater pollution in Northern China[J]. Carsologica Sinica, 2020, 39(3):287-298.
|
[44] |
卢海平, 张发旺, 赵春红, 夏日元, 梁永平, 陈宏峰. 我国南北方岩溶差异[J]. 中国矿业, 2018, 27(S2):317-319. doi: 10.12075/j.issn.1004-4051.2018.S2.077
LU Haiping, ZHANG Fawang, ZHAO Chunhong, XIA Riyuan, LIANG Yongping, CHEN Hongfeng. Differences between southern karst and northern karst besides scientific issues that need attention[J]. China Mining Magazine, 2018, 27(S2):317-319. doi: 10.12075/j.issn.1004-4051.2018.S2.077
|
[45] |
梁永平, 申豪勇, 高旭波. 中国北方岩溶地下水的研究进展[J]. 中国岩溶, 2022, 41(5):199-219.
LIANG Yongping, SHEN Haoyong, GAO Xubo. Review of research progress of karst groundwater in Northern China[J]. Carsologica Sinica, 2022, 41(5):199-219.
|
[46] |
Matonti C, Lamarche J, Guglielmi Y, Marie L. Structural and petrophysical characterization of mixed conduit/seal fault zones in carbonates: Example from the Castellas fault (SE France)[J]. Journal of Structural Geology, 2012, 39:103-121. doi: 10.1016/j.jsg.2012.03.003
|
[47] |
Agosta F. Rock physical properties of carbonate fault rocks, Fucino Basin (central Italy): Implications for fault seal in platform carbonates[J]. Geofluids, 2007, 7(1):19-32. doi: 10.1111/j.1468-8123.2006.00158.x
|
[48] |
Ferrill D A, Morris A P. Dilational normal faults[J]. Journal of Structural Geology, 2003, 25(2):183-196. doi: 10.1016/S0191-8141(02)00029-9
|
[49] |
Childs C, Manzocchi T, Walsh J J, Bonson C G, Nicol A, Schopfer M P J. A geometric model of fault zone and fault rock thickness variations[J]. Journal of Structural Geology, 2009, 31(2):117-127. doi: 10.1016/j.jsg.2008.08.009
|
[50] |
Micarelli L, Benedicto A. Normal fault terminations in limestones from the SE-Basin (France): Implications for fluid flow[C]//Wibberley C A J, Kurz W, Imber J. The internal structure of fault zones: Implications for mechanical and fluid-flow properties. Geological Society, 2016: 123-138.
|
[51] |
Peacock D C P, Xing Z. Field examples and numerical modelling of oversteps and bends along normal faults in cross-section[J]. Tectonophysics, 1994, 234(1-2):147-167. doi: 10.1016/0040-1951(94)90209-7
|