Citation: | YANG Yang, ZHAO Liangjie, XIA Riyuan, WANG Ying. Distribution and influencing factors of karst underground rivers in the Pearl River Basin[J]. CARSOLOGICA SINICA, 2022, 41(4): 562-576. doi: 10.11932/karst20220515 |
[1] |
袁道先. 西南岩溶石山地区重大环境地质问题及对策研究[M]. 北京: 科学出版社, 2014.
YUAN Daoxian. Study on major environmental geological problems and countermeasures in karst stone mountain area of southwest China[M]. Beijing: Science Press, 2014.
|
[2] |
ZOU S, ZHU M, TANG J, XIA R. Water resources security in karst area of southwest China: problems and countermeasures[J]. Acta Geologica Sinica, 2006, 80(10):637-642.
|
[3] |
夏日元. 西南岩溶石山区地下水资源调查评价与开发利用模式[M]. 北京: 科学出版社, 2018.
XIA Riyuan. Investigation, evaluation and exploitation of groundwater resources in karst rocky mountainous areas of Southwest China[M]. Beijing: Science Press, 2018.
|
[4] |
赵良杰. 岩溶裂隙−管道双重含水介质水流交换机理研究[D]. 北京: 中国地质大学(北京), 2019.
ZHAO Liangjie. Study of water exchange mechanism of karst matrix and conduit medium[D]. Beijing: China University of Geosciences (Beijing), 2019.
|
[5] |
Brkić Ž, Kuhta M, Hunjak T. Groundwater flow mechanism in the well-developed karst aquifer system in the western Croatia: Insights from spring discharge and water isotopes[J]. Catena, 2018, 161:14-26. doi: 10.1016/j.catena.2017.10.011
|
[6] |
王宇. 岩溶区地表水与地下水资源及环境统一评价的流域边界划分研究[J]. 中国岩溶, 2019, 38(6):823-830.
WANG Yu. Study on watershed boundary division for unified evaluation of surface water and groundwater resources and environment in karst areas[J]. Carsologica Sinica, 2019, 38(6):823-830.
|
[7] |
杨杨, 赵良杰, 潘晓东, 夏日元, 曹建文. 西南岩溶山区地下水资源评价方法对比研究: 以寨底地下河流域为例[J]. 中国岩溶, 2022, 41(1):111-123.
YANG Yang, ZHAO Liangjie, PAN Xiaodong, XIA Riyuan, CAO Jianwen. Comparative analysis of groundwater resources evaluation methods in karst area of south China: Taking Zhaidi underground river system as an example[J]. Carsologica Sinica, 2022, 41(1):111-123.
|
[8] |
罗明明, 季怀松. 岩溶管道与裂隙介质间溶质暂态存储机制[J]. 水科学进展, 2022, 33(1):145-152.
LUO Mingming, JI Huaisong. Mechanism of solute transient storage between karst conduit and fissures[J]. Advances in Water Science, 2022, 33(1):145-152.
|
[9] |
Sağır Ç, Kurtuluş B, Razack M. Hydrodynamic characterization of Mugla karst aquifer using correlation and spectral analyses on the rainfall and springs water-level time series[J]. Water, 2019, 12(1):85. doi: 10.3390/w12010085
|
[10] |
Sauter M, Giese M, Bailly Comte V, Maré chal J C, Reimann T, Geyer T. Turbulent and laminar flow in karst conduits under unsteady flow conditions: Interpretation of pumping tests by discrete conduit-continuum modeling[J]. Water Resources Research, 2018, 54(3):1918-1933. doi: 10.1002/2017WR020658
|
[11] |
蒋忠诚, 夏日元, 时坚, 裴建国, 何师意, 梁彬. 西南岩溶地下水资源开发利用效应与潜力分析[J]. 地球学报, 2006(5):495-502. doi: 10.3321/j.issn:1006-3021.2006.05.012
JIANG Zhongcheng, XIA Riyuan, SHI Jian, PEI Jianguo, HE Shiyi, LIANG Bin. The application effects and exploitation capacity of karst underground water resources in southwest China[J]. Acta Geoscientica Sinica, 2006(5):495-502. doi: 10.3321/j.issn:1006-3021.2006.05.012
|
[12] |
王明章, 王伟, 周忠赋. 峰丛洼地区地下地表联合成库地下水开发模式: 贵州普定马官水洞地下河开发利用[J]. 贵州地质, 2005(4):279-283. doi: 10.3969/j.issn.1000-5943.2005.04.012
WANG Mingzhang, WANG Wei, ZHOU Zhongfu. Development model for the coalition of surface and underground water into reservoir in the karst areas of peak-cluster depression: Taking example for exploitation of shuidong underground river at Maguan, Puding county, Guizhou[J]. Guizhou Geology, 2005(4):279-283. doi: 10.3969/j.issn.1000-5943.2005.04.012
|
[13] |
赵良杰, 王莹, 周妍, 曹建文, 杨杨, 王喆. 基于SWAT模型的珠江流域地下水资源评价研究[J/OL]. 地球科学: 1-19. https://kns.cnki.net/kcms/detail/42.1874.P.20220119.1634.006.html.
ZHAO Liangjie, WANG Ying, ZHOU Yan, CAO Jianwen, YANG Yang, WANG Zhe. Groundwater resources evaluation in the pearl river basin based on swat model[J/OL]. Earth Science, 1-19 . https://kns.cnki.net/kcms/detail/42.1874.P.20220119.1634.006.html.
|
[14] |
Gallegos J J, Hu B X, Davis H. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP[J]. Hydrogeology Journal, 2013, 21(8):1749-1760. doi: 10.1007/s10040-013-1046-4
|
[15] |
姜光辉, 郭芳, 汤庆佳, 李鑫, 曾莘茹. 人工示踪技术在岩溶地区水文地质勘察中的应用[J]. 南京大学学报(自然科学版), 2016, 52(3):503-511.
JIANG Guanghui, GUO Fang, TANG Qingjia, LI Xin, ZENG Xinru. Application of tracer test techniques in hydrogeological survey in karst area[J]. Journal of Nanjing University(Natural Sciences), 2016, 52(3):503-511.
|
[16] |
赵良杰, 夏日元, 易连兴, 杨杨, 王喆, 卢海平. 岩溶地下河浊度来源及对示踪试验影响的定量分析[J]. 地球学报, 2016, 37(2):241-246. doi: 10.3975/cagsb.2016.02.12
ZHAO Liangjie, XIA Riyuan, YI Lianxing, YANG Yang, WANG Zhe, LU Haiping. Quantitative analysis of the source and the effect of turbidity in karst river on tracer test[J]. Acta Geoscientica Sinica, 2016, 37(2):241-246. doi: 10.3975/cagsb.2016.02.12
|
[17] |
Wang C, Wang X, Majdalani S, Guinot V, Jourde H. Influence of dual conduit structure on solute transport in karst tracer tests: An experimental laboratory study[J]. Journal of Hydrology, 2020, 590:125255. doi: 10.1016/j.jhydrol.2020.125255
|
[18] |
曹建华, 蒋忠诚, 袁道先, 夏日元, 章程. 岩溶动力系统与全球变化研究进展[J]. 中国地质, 2017, 44(5):874-900. doi: 10.12029/gc20170504
CAO Jianhua, JIANG Zhongcheng, YUAN Daoxian, XIA Riyuan, ZHANG Cheng. The progress in the study of the karst dynamic system and global changes in the past 30 years[J]. Geology in China, 2017, 44(5):874-900. doi: 10.12029/gc20170504
|
[19] |
蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展: 基于 IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10):1081-1090.
PU Junbing, JIANG Zhongcheng, Yuan Daoxian, ZHANG Cheng. Some opinions on rock-weathering-related carbon sinks from the IPCC fifth assessment report[J]. Advance in Earth Sciences, 2015, 30(10):1081-1090.
|
[20] |
赵小二, 常勇, 吴吉春. 岩溶地下河污染物运移模型对比研究[J]. 环境科学学报, 2020, 40(4):1250-1259. doi: 10.13671/j.hjkxxb.2019.0390
ZHAO Xiaoer, CHANG Yong, WU Jichun. A comparative study on two contaminant transport models used in karst underground rivers[J]. Acta Scientiae Circumstantiae, 2020, 40(4):1250-1259. doi: 10.13671/j.hjkxxb.2019.0390
|
[21] |
Madonia P, Cangemi M, Oliveri Y, Germani C. Hydrogeochemical characters of karst aquifers in central Italy and relationship with neotectonics[J]. Water, 2020, 12(7):1926. doi: 10.3390/w12071926
|
[22] |
杨立铮. 我国南方某些地区地下河的结构特征及其形成和演化[J]. 成都地质学院学报, 1982, 2:54-61.
YANG Lizheng. Structural characteristics, formation and evolution of underground rivers in some areas of southern China[J]. Journal of Chengdu Institute of Geology, 1982, 2:54-61.
|
[23] |
蒲俊兵. 重庆地区岩溶地下河发育与分布的基本特征[J]. 中国岩溶, 2013, 32(3):266-279. doi: 10.3969/j.issn.1001-4810.2013.03.004
PU Junbing. Development and distribution of karst subterranean streams in Chongqing, China[J]. Carsologica Sinica, 2013, 32(3):266-279. doi: 10.3969/j.issn.1001-4810.2013.03.004
|
[24] |
陈思燕, 曾敏. 四川岩溶地下河空间分布规律研究[J]. 地下水, 2015(3):4-6. doi: 10.3969/j.issn.1004-1184.2015.03.003
CHEN Siyan, ZENG Min. Study on the spatial distribution regularity of karst ground rivers in Sichuan[J]. Ground water, 2015(3):4-6. doi: 10.3969/j.issn.1004-1184.2015.03.003
|
[25] |
韦王秋, 左天惠, 张沛全, 李海. 红水河流域岩溶地下河出口分布特征与控制因素[J]. 科学技术创新, 2017(34):17-18. doi: 10.3969/j.issn.1673-1328.2017.34.008
WEI Wangqiu, ZUO Tinahui, ZHANG Peiquan, LI Hai. Distribution characteristics and controlling factors of karst underground river outlet in Hongshuihe River basin[J]. Science and Technology Innovation, 2017(34):17-18. doi: 10.3969/j.issn.1673-1328.2017.34.008
|