• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
WANG Guilin,QIANG Zhuang,CAO Cong,et al.Evaluation of susceptibility to karst collapse based on the geodetector and analytic hierarchy method: An example of the Zhongliangshan area in Chongqing[J].Carsologica Sinica,2022,41(01):79-87. doi: 10.11932/karst2021y08
Citation: WANG Guilin,QIANG Zhuang,CAO Cong,et al.Evaluation of susceptibility to karst collapse based on the geodetector and analytic hierarchy method: An example of the Zhongliangshan area in Chongqing[J].Carsologica Sinica,2022,41(01):79-87. doi: 10.11932/karst2021y08

Evaluation of susceptibility to karst collapse based on the geodetector and analytic hierarchy method: An example of the Zhongliangshan area in Chongqing

doi: 10.11932/karst2021y08
Funds:

 cstc2019jscx-msxmX0303

 KJ2019047

 2018YFC1505501

  • Received Date: 2020-05-30
  • Publish Date: 2022-02-25
  • Karst collapse is a process in which the surface collapses suddenly under the action of various factors in the karst distribution area. As one of the main types of geological disasters in Southwest China, karst collapse mainly damages roads, railways, buildings and surface water, influences the use of agricultural water and land, and causes casualties and property losses. Due to its covertness, suddenness and uncertainty, karst collapse has become an important factor affecting the regional economic development. Therefore, establishing an evaluation model of karst collapse susceptibility that conforms to regional characteristics is of great significance for local the planning of land use and collapse prevention.This research takes the Zhongliangshan area of Chongqing as the study area, and samples 327 collapse points from the field investigation. Based on the factors that may induce the karst collapse, 13 potential impact factors of 6 classes for karst collapse have been preliminarily determined, namely, the topography (elevation, slope, slope direction, surface curvature, section curvature, slope position, and surface roughness), the geological structure (distance from fault), strata, hydrogeology conditions (formation rich in water, and terrain humidity index), human engineering activities (distance from tunnel), overburden characteristics (soil thickness) and so on, and a geospatial database of the study area has been established by using GIS to process the original data. Given the influence of the sample number in non-collapse points on the selection of impact factors, this study uses three groups of number ratios in different collapse points to analyze the explanatory power (q-statistic in Geodetector) of each factor in the karst collapse area. In order to avoid the fact that the establishment of the pair comparison matrix in the analytic hierarchy process is too tedious and inefficient, resulting from the excessive impact factors, the factor detection has been carried out in three groups of sample points in the study area, and the evaluation factors with greater influence on collapse have been selected quantitatively by the size of q value, based on GIS technology and geographic detector method. According to the principle of analytic hierarchy process and the screening results of subsidence impact factors, the evaluation system of karst collapse susceptibility in the study area has been established by taking the karst collapse susceptibility as the target layer. In order to accurately reflect the important difference among factors and reduce the influence of human experience factors, a pair comparison matrix has been established based on the collapse distribution, impact factor analysis results and q value results of geographical detector. The susceptibility to karst collapse has been evaluated by using the analytic hierarchy process. With the help of the GIS spatial analysis module, the evaluation results have been assigned to grid units, and then the zoning map of the karst collapse susceptibility in the study area is obtained. The results show that as the sample amount changes, there is a degree difference in the importance of impact factors. However, among the three sets of data, strata, formation rich in water, distance from tunnel, elevation and slope are always the factors that have the largest impact on karst collapse. The use of geographic detectors to filter factors can avoid the influence of irrelevant factors, and the prediction accuracy (89.88%) conducted by analytic hierarchy process to zone the karst collapse susceptibility has been significantly improved. The areas with higher probability of collapse mainly distribute in the Jialingjiang formation and Daye formation in the karst trough area.

     

  • WANG Guilin,QIANG Zhuang,CAO Cong,et al.Evaluation of susceptibility to karst collapse based on the geodetector and analytic hierarchy method: An example of the Zhongliangshan area in Chongqing[J].Carsologica Sinica,2022,41(01):79-87.
  • 康彦仁.论岩溶塌陷形成的致塌模式[J]. 水文地质工程地质,1992,19(4):32-34,46.

    KANGYanren. Collapse-causing models in karstic collapse process[J].Hydrogeology&Engineering Geology,1992,19(4):32-34,46.
    季伟峰,胡时友,宋军. 中国西南地区主要地质灾害及常用监测方法[J]. 中国地质灾害与防治学报,2007(S1):38-41.

    JIWeifeng, HUShiyou, SONGJun. Main geological hazards and monitoring methods in common use in the southwest region of China [J].The Chinese Journal of Geological Hazard and Control,2007(S1):38-41.
    罗小杰,沈建.我国岩溶地面塌陷研究进展与展望[J].中国岩溶,2018,37(1):101-111.

    LUOXiaojie,SHENJian.Research progress and prospect of karst ground collapse in China[J].Carsologica Sinica,2018,37(1):101-111.
    段先前,褚学伟,李博. 基于集对分析的岩溶塌陷危险性预测评价[J]. 安全与环境学报,2016,16(4):72-76.

    DUANXianqian,CHUXuewei,LIBo. Risk prediction and evaluation of the karst collapse based on the set pair mechanism analysis [J]. Journal of Safety and Environment,2016,16(4):72-76.
    王恒恒,张发旺,郭纯青,苏春田.基于层次分析法的城市岩溶塌陷危险性评价:以武汉市南部为例[J].中国岩溶,2016,35(6):667-673.

    WANGHengheng, ZHANGFawang, GUOChunqing, SUChuntian. Urban karst collapse hazard assessment based on analytic hierarchy process: An example of southern Wuhan City[J]. Carsologica Sinica,2016,35(6):667-673.
    吴福,江思义,刘庆超,何源,李海良. 广西桂林市规划中心城区岩溶塌陷易发性评价[J]. 中国地质灾害与防治学报,2019,30(5):83-91.

    WUFu,JIANGSiyi,LIUQingchao,HEYuan,LIHailiang.Evaluation of susceptibility of karst collapse in urban planning area of Guilin City of Guangxi Zhuang Autonomous Region[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):83-91.
    焦玉国. 山东泰安市地质灾害易发性分区[J]. 中国地质灾害与防治学报,2016,27(1):130-135.

    JIAOYuguo.Geology hazard’s susceptibility zonation in villages and towns in Tai’an,Shandong province[J]. The Chinese Journal of Geological Hazard and Control,2016,27(1):130-135.
    武鑫,黄敬军,缪世贤.基于层次分析-模糊综合评价法的徐州市岩溶塌陷易发性评价[J].中国岩溶,2017,36(6):836-841.

    WUXin, HUANGJingjun, MIAOShixian. Susceptibility zoning and mapping of karst collapse in Xuzhou using analytic hierarchy process-fuzzy comprehensive evaluation method[J]. Carsologica Sinica,2017,36(6):836-841.
    李公岩,周绍智,万继涛,薄克廷. 山东省枣庄盆地岩溶塌陷形成条件及易发区划分方法探讨[J]. 中国地质灾害与防治学报,2003(4):52-56.

    LIGongyan, ZHOUShaozhi, WANGJitao, BOKeting. Discussion on formation condition and method of zoning susceptible regions of karst collapse in Zaozhuang Basin, Shandong Province[J]. The Chinese Journal of Geological Hazard and Control,2003(4):52-56.
    何书,王家鼎,朱忠,吴开兴. 基于模糊贴近度的岩溶塌陷易发性研究[J]. 自然灾害学报,2009,18(1):8-13.

    HEShu, WANGJiading, ZHUZhong, WUKaixin. Fuzzy approach degree-based research on occurrence of karstic collapse [J].Journal of Natural Disasters,2009,18(1):8-13.
    GalveJ P,GutiérrezF,RemondoJ. Evaluating and comparing methods of sinkhole susceptibility mapping in the Ebro Valley evaporite karst (NE Spain)[J]. Geomorphology,2009,111(3):160-172.
    谭开鸥,李玉生. 重庆地区的岩溶塌陷及其形成机理[J]. 中国地质灾害与防治学报,1995(3):23-27.

    TANKaiou,LIYusheng. Karst collapse and its formation mechanism in changing region[J].The Chinese Journal of Geological Hazard and Control,1995(3):23-27.
    赵博超,朱蓓,王弘元,赖柄霖.浅谈岩溶塌陷的影响因素与模型研究[J].中国岩溶,2015,34(5):515-521.

    ZHAOBochao, ZHUBei, WANGHongyuan, LAIBinglin. Influence factors and mathematical models of karst collapses[J]. Carsologica Sinica,2015,34(5):515-521.
    吴亚楠.泰安市城区—旧县水源地岩溶地面塌陷历程及影响因素分析[J].中国岩溶,2020,39(2):225-231.

    WUYanan.Process and influencing factors of karst ground collapse in the water source area of Tai’an-Jiuxian[J].Carsologica Sinica,2020,39(2):225-231.
    涂婧,李慧娟,彭慧,魏熊,贾龙.武汉市江夏区大桥新区红旗村黏土盖层岩溶塌陷致塌模式分析[J]. 中国岩溶, 2018, 37(1):112-119.

    TUJing,LIHuijuan,PENGHui,WEIXiong,JIALong.Analysis on collapse model of the karst area covered by clay in Wuhan City Jiangxia district Hongqi village [J].Carsologica Sinica,2018,37(1):112-119.
    贺怀振,魏永耀,黄敬军. 基于模糊综合评判模型的徐州地铁沿线岩溶塌陷稳定性评价[J]. 中国地质灾害与防治学报,2017,28(3):66-72.

    HEHuaizhen,WEIYongyao,HUANGJingjun. Stability assessment for karst collapse along Xuzhou metro using a comprehensive fuzzy model[J]. The Chinese Journal of Geological Hazard and Control,2017,28(3):66-72.
    SaatyT L. A scaling method for priorities in hierarchical structures[J]. Academic Press,1977,15(3):234-281.
    王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116-134.

    WANGJinfeng, XUChengdong. Geodetector: Principle and prospective[J].Acta Geographica sinica,2017,72(1):116-134.
    贾龙,蒙彦,戴建玲.广佛肇地区岩溶塌陷易发性分析[J].中国岩溶,2017,36(6):819-829.

    JIALong,MENGYan,DAIJianling. Analysis of karst collapse susceptibility in Guang-Fo-Zhao regions [J].Carsologica Sinica,2017,36(6):819-829.
  • Relative Articles

    [1]YI Shouyong, JIA Long, HAN Qingding, LUO Xiyi, ZOU Jie. Mechanism analysis of karst ground collapse caused by the construction of punching piles in Fuwan, Foshan City[J]. CARSOLOGICA SINICA, 2024, 43(5): 1144-1155. doi: 10.11932/karst20240511
    [2]WU Ya’nan, YANG Yuntao, JIAO Yuguo, LIU Zhitao, WANG Yanling, ZHAI Daiting, ZHOU Shaozhi, WEI Kai, CHENG Feng. Analysis on development characteristics and inducement of karst collapse in Shandong Province[J]. CARSOLOGICA SINICA, 2023, 42(1): 128-138, 148. doi: 10.11932/karst2023y007
    [3]YANG Ning, SHI Meng, YIN Tao, YU Linhong, WANG Yuanfeng, ZHANG Jie, FENG Peipei. Study on the zoning of karst development in the Jiaodong Peninsula: Take the Zhongqiao area of Yantai City as an example[J]. CARSOLOGICA SINICA, 2023, 42(5): 956-968. doi: 10.11932/karst20230508
    [4]LU Yulong, YE Gaofeng, YANG Xian, LU Zhilin, LIU Yang, ZHANG Lianzhi, LI Ganlong. Study on susceptibility of karst collapse based on normal cloud model in Yonghe town, Liuyang City[J]. CARSOLOGICA SINICA, 2023, 42(6): 1294-1302. doi: 10.11932/karst2023y027
    [5]LIU Daohan, ZHANG Xin, HE Jun, WU Jianqiang, LIU Lei. Study on the application of surface nuclear magnetic resonance in the detection of karst collapse in Wuhan[J]. CARSOLOGICA SINICA, 2022, 41(1): 13-20. doi: 10.11932/karst20220101
    [6]WU Yuanbin, LIU Zhikui, YIN Renchao, LEI Mingtang, DAI Jianling, LUO Weiquan, PAN Zongyuan. Evaluation of karst collapse susceptibility in Huaihua area,Hunan Province based on AHP and GIS[J]. CARSOLOGICA SINICA, 2022, 41(1): 21-33. doi: 10.11932/karst2021y44
    [7]ZHANG Jie, BI Pan, WEI Aihua, TAO Zhibing, ZHU Huichao. Assessment of susceptibility to karst collapse in the Qixia Zhongqiao district of Yantai based on fuzzy comprehensive method[J]. CARSOLOGICA SINICA, 2021, 40(2): 215-220. doi: 10.11932/karst2021y07
    [8]WU Yanan, WANG Yanling, ZHOU Shaozhi, TANG Liwei, JIAO Yuguo. Risk assessment of karst collapse in the Tailai basin based on the synthetic index method[J]. CARSOLOGICA SINICA, 2020, 39(3): 391-399. doi: 10.11932/karst20200307
    [9]MENG Yan, LEI Mingtang. Analysis of situation and trend of sinkhole collapse[J]. CARSOLOGICA SINICA, 2019, 38(3): 411-417. doi: 10.11932/karst20190311
    [10]DAI Jianling, LUO Weiquan, WU Yuanbin, JIANG Xiaozhen. Mechanism analysis of sinkholes formation at Jili village, Laibin City, Guangxi, China[J]. CARSOLOGICA SINICA, 2017, 36(6): 808-818. doi: 10.11932/karst2017y59
    [11]WU Ya’nan. Analysis of karst collapse development in Tai’anJiuxian water source area[J]. CARSOLOGICA SINICA, 2017, 36(1): 94-100. doi: 10.11932/karst20170112
    [12]GAO Peide, WANG Linfeng. Analysis of collapse mechanism for mantled karst collapse[J]. CARSOLOGICA SINICA, 2017, 36(6): 770-776. doi: 10.11932/karst20170602
    [13]WU Xin, HUANG Jingjun, MIAO Shixian. Susceptibility zoning and mapping of karst collapse in Xuzhou using analytic hierarchy process-fuzzy comprehensive evaluation method[J]. CARSOLOGICA SINICA, 2017, 36(6): 836-841. doi: 10.11932/karst20170606
    [14]JIA Long, MENG Yan, DAI Jianling. Analysis of karst collapse susceptibility in Guang-Fo-Zhao regions[J]. CARSOLOGICA SINICA, 2017, 36(6): 819-829. doi: 10.11932/karst20170604
    [15]WANG Hengheng, ZHANG Fawang, GUO Chunqing, SU Chuntian. Urban karst collapse hazard assessment based on analytic hierarchy process: An example of southern Wuhan City[J]. CARSOLOGICA SINICA, 2016, 35(6): 667-673. doi: 10.11932/karst20160608
    [16]WEI Yong-yao, SUN Shu-lin, HUANG Jing-jun, JIANG Su, MIAO Shi-xian. Spatial-temporal distribution and causes of karst collapse in the Xuzhou area[J]. CARSOLOGICA SINICA, 2015, 34(1): 52-57. doi: 10.11932/karst20150107
    [17]LI Yan-gui, LIU Zi-long, YU Xiao-min, LUO Shui-yu, YONG Fan, JIANG Zheng-zhong. Formation conditions and mechanisms of karst subsidence: A case study of Huangzhuang village in Tangshan[J]. CARSOLOGICA SINICA, 2014, 33(3): 299-307.
    [18]MENG Yan, YIN Kun-long, LEI Ming-tang. PROBABILISTIC ANALYSIS ON KARST COLLAPSE INDUCED BY WATER TABLE FLUCTUATION[J]. CARSOLOGICA SINICA, 2006, 25(3): 239-241. doi: 10.3969/j.issn.1001-4810.2006.03.009
    [19]WAN Zhi-bo, WU Xiong, XU Sheng, LI Yuan-zhong, YANG Rui-ying, CHEN Hong-han, GAO Ming-xian, ZHANG Shun-feng. ANALYSIS ON THE CHARACTERISTICS AND CAUSES OF THE KARST COLLAPSE IN ZAOZHUANG[J]. CARSOLOGICA SINICA, 2006, 25(2): 146-151. doi: 10.3969/j.issn.1001-4810.2006.02.010
    [20]DU Yu-chao, LI Zhao-lin, CHEN Hong-feng, LUO Wei-quan. ANALYSIS ON SENSITIVITY OF KARST ENVIRONMENT IN GUANJIANG BASIN, GUANGXI[J]. CARSOLOGICA SINICA, 2006, 25(3): 220-227. doi: 10.3969/j.issn.1001-4810.2006.03.006
  • Cited by

    Periodical cited type(12)

    1. 谢慧君,曹聪,范泽英,杜清江,刘智,尹小彤. 重庆“四山”生态环境状况时空特征与障碍因子分析. 水土保持研究. 2025(02): 353-365 .
    2. 刘晓慧,张金雨,徐玲. 融合地理探测器和随机森林的地质灾害易发性评价——以山西省乡宁县为例. 山东建筑大学学报. 2025(01): 62-70 .
    3. 薛良方,邹晔,王超,张梅,郭刘鹏,秦志强,张立川. 兖州滋阳山地区岩溶塌陷易发性评价. 西部探矿工程. 2025(02): 1-5+8 .
    4. 郐毅智. 佛山市桂城—里水片区岩溶地面塌陷易发性评价. 低碳世界. 2024(02): 103-105 .
    5. 崔毅斌,周亚楠,周小雨,韩金伟. GIS技术的半定量层次分析法在岩溶塌陷危险性评价中的应用. 煤炭技术. 2024(03): 149-153 .
    6. 胡兆鑫,罗为群,蒋忠诚,吴泽燕,汤庆佳. 基于生态系统脆弱性评价的典型岩溶区生态治理分区. 中国岩溶. 2024(03): 661-671+703 . 本站查看
    7. 梁峰,江攀和,唐广,刘双. 基于AHP及信息量模型的凤冈县地质灾害易发性评价. 贵州地质. 2024(04): 446-455 .
    8. 高晓杰,李召峰,林久卿,宋云龙,青尚杰,崔向东,彭晓光. 滨海潮汐岩溶地表软土注浆技术研究与应用. 浙江大学学报(工学版). 2023(03): 552-561 .
    9. 廖云平,吴斌,陈立川,徐洪,董平. 岩溶区诱发性土洞塌陷的水膜效应作用机理研究. 地下空间与工程学报. 2023(03): 881-887+910 .
    10. 任涛,田国亮,宁志杰,周爱红,李宽,陈石. 基于地理探测器和随机森林的岩溶塌陷易发性评价. 灾害学. 2023(03): 227-234 .
    11. 李慧,魏兴萍,刘程,李良鑫. 基于变权重-云模型的岩溶隧道涌突水灾害风险评估——以中梁山隧道为例. 中国岩溶. 2023(03): 548-557+572 . 本站查看
    12. 林弘杰,韩旭日,齐丽君,王新舒. 基于AHP层次分析法对内蒙古气象教育培训质量效果评估. 内蒙古气象. 2022(06): 36-39 .

    Other cited types(7)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1930) PDF downloads(79) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return