• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 40 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
XIAO Qiong,ZHAO Lifang,LU Laimou,et al.Spatial differences of soil physical and chemical properties in Darongjiang river watershed[J].Carsologica Sinica,2021,40(05):815-824. doi: 10.11932/karst20210508
Citation: XIAO Qiong,ZHAO Lifang,LU Laimou,et al.Spatial differences of soil physical and chemical properties in Darongjiang river watershed[J].Carsologica Sinica,2021,40(05):815-824. doi: 10.11932/karst20210508

Spatial differences of soil physical and chemical properties in Darongjiang river watershed

doi: 10.11932/karst20210508
Funds:

 DD20190022

 2018GXNSFDA050002

 KY201802009

 2020YFE0204700

 132852KYSB20170029-01

  • Received Date: 2021-03-30
  • Publish Date: 2021-10-25
  • The study on physical and chemical properties of soil in watershed is the basis for soil nutrient management and rational fertilization. The Darongjiang river is the upper reach of the Lijiang river, the third level tributary of the Pearl River. The physical and chemical properties of soil and their characteristics of spatial distribution in Darongjiang river watershed are analyzed, and the research findings are of great significance for agricultural activities in this watershed as well as for the protection of Lijiang river. The results show as follows,(1)The average pH values of soil are 4.04-6.23 (soil samples are taken in 20 cm under the surface) and 4.02-6.53 (soil samples are taken in 50 cm under the surface),which present the Zonal characteristics of soil. The average electricity conductivity (EC) is 352.93 μscm-1 with the range of 145-1,015 μscm-1. The values of soil pH and EC in different geology backgrounds demonstrate a significant difference in the study area; (2) The soil particle composition in the watershed is dominated by silt (59.39%), followed by sand particle (33.26%) and clay (7.36%). And the sand particle decreases with the increase of sampling depth, while the content of clay and silt increases. The volumetric moisture content of soil ranges from 22.04% to 46.45%, with an average of 31.55% in 20 cm under the surface and an average of 30.98% in 50 cm under the surface; (3) The average concentration of total nitrogen (TN), total organic carbon (TOC), and total inorganic carbon (TIC) are respectively 1.50 gkg-1, 15.25 gkg-1 and 16.89 gkg-1. The spatial distribution of TN, TOC and TIC conforms to different types of land use, namely, the concentration is higher in forest and lower in cultivated land. Moreover, the nitrogen content decreases with the increase of soil depth, mainly because the decomposition of humus such as deadwood and fallen leaves enriches carbon, nitrogen and other chemical substances in the surface soil; (4) The concentration of TOC, TIC and TN in soil is negatively correlated with the content of clay and silt , and positively correlated with the content of sand particle. By contrast, the pH value of soil is positively correlated with the content of clay and silt, and negatively correlated with the content of sand particle. The soil TN is of a significant positive correlation with TOC and TIC, but of a negative correlation with electricity conductivity. The concentration of TIC is of a great positive correlation with that of TOC and of a significant negative correlation with volumetric water content and electricity conductivity.

     

  • XIAO Qiong,ZHAO Lifang,LU Laimou,et al.Spatial differences of soil physical and chemical properties in Darongjiang river watershed[J].Carsologica Sinica,2021,40(05):815-824.
  • loading
  • AndrewsS, DitzlerC A, AndrewsS S. Soil quality: Why and how[J]. Geoderma, 2003, 114(3/4): 145-156.
    徐建明,孟俊,刘杏梅,等.我国农田土壤重金属污染防治与粮食安全保障[J].中国科学院院刊, 2018, 33(2):153-159.
    范合琴,李艳芬.基于土壤生态环境的耕地资源保护评价[J].农业工程,2019,9(7):69-71.
    WangJ,FuB,QiuY,et al. Soil nutrients in relation to land use and landscape position in the semi-arid small catchment on the loess plateau in China[J]. Journal of Arid Environments, 2001, 48 (4): 537-550.
    刘 鹏,蒋忠诚,蓝芙宁,等.土地利用对溶丘洼地土壤容重、水分和有机质空间异质性的影响:以南洞流域驻马哨洼地为例[J].中国岩溶,2019,38(1):100-108.
    翟可,徐惠强,姚志刚,等. 江苏省湿地保护现状、问题及对策[J].南京林业大学学报(自然科学版), 2013,37 (3):175-180.
    孙悦迪,郭建军,李凯,等.白龙江流域泥石流沟不同立地条件下土壤理化性质对比研究[J].兰州大学学报(自然科学版), 2014, 50(5):699-704.
    张洋洋.白龙江流域土壤碳氮磷含量及空间分布特征研究[D]. 兰州: 兰州大学, 2017.
    来雪慧,任晓莉,安晓阳,等.三江平原小流域土地利用类型与土壤理化性质的灰色关联分析[J].江苏农业科学, 2018, 46(17):276-280.
    李宗善, 杨磊, 王国梁, 等. 黄土高原水土流失治理现状、问题及对策[J]. 生态学报, 2019, 39(20): 7398-7409.
    WangRui, DongZhibao, ZhouZhengchao, et al. Effect of vegetation patchiness on the subsurface water distribution in abandoned farmland of the Loess Plateau, China[J]. Science of the Total Environment, 2020, 746:141416.
    李安定,郭春艳,符裕红,等.贵州喀斯特峰丛洼地石漠化区土壤物理特征时空分异[J].中国岩溶, 2017, 36(2): 202-206.
    袁道先.“岩溶作用与碳循环”研究进展[J].地球科学进展,1999,14(5): 425-432.
    章程.不同土地利用下的岩溶作用强度及其碳汇效应[J].科学通报, 2011, 56(26): 2174-2180.
    吴献花, 阳利永, 赵斌, 等.不同土地利用方式土壤理化性质的月际变化:以滇池柴河流域为例[J].玉溪师范学院学报, 2013, 29(4):21-26.
    王帅,邓佳,邓富玲,等.岩溶地区休闲农业旅游对土壤环境的影响[J].中国岩溶, 2017, 36(3): 377-386.
    李艳,史舟,徐建明,等.地统计学在土壤科学中的应用及展望[J].水土保持学报, 2003, 17(1):178-182.
    王炎强,毕如田,张吴平,等.黄土丘陵区煤矿开采对土壤理化性质的影响:以晋城市长河流域为例[J].中国农学通报, 2017, 33(36):111-118.
    崔剑,宋轩,白朝军,等.基于GIS和RS的淇河流域水土流失定量研究[J].河南科技, 2019(11):71-75.
    蒋祖林,梁钦川,王方日,等.兴安县降水气候特征分析[J].农业灾害研究, 2019, 9(3):40-41,51.
    孙平安,于奭,莫付珍,等.不同地质背景下河流水化学特征及影响因素研究:以广西大溶江、灵渠流域为例[J].环境科学, 2016, 37(1):123-131.
    刘长远.广西兴安县闽楠人工造林技术与效果初步分析[J].农业与技术, 2018, 38(7):90-91.
    董玉清,官鹏,卢瑛,等.猫儿山不同海拔土壤有机碳组分构成及含量特征[J].土壤通报, 2020, 51(5): 1142-1151.
    付旋旋. 广西猫儿山土壤发生特性及系统分类[D].南宁:广西大学,2018.
    郝性中.滇东南喀斯特峰丛地区灰岩土壤的基本性质和综合评价[J].云南地理环境研究, 1993(1):65-75.
    张勇,秦嘉海,赵芸晨,等.黑河上游冰沟流域不同林地土壤理化性质及有机碳和养分的剖面变化规律[J].水土保持学报, 2013, 27(2):126-130.
    吴克宁,赵瑞.土壤质地分类及其在我国应用探讨[J].土壤学报, 2019, 56(1):227-241.
    施凯峰,钟军珺.上海崇明区绿地土壤特征分析[J].上海建设科技, 2019(5):77-80.
    周会萍,王晓冰,曹映辉,等. 刺柏人工林土壤有机碳垂直分布特征研究[J].林业资源管理,2019(6):108-114.
    金慧龙,李裕元,高茹,等. 亚热带小流域土壤氮磷分布及其环境效应[J].水土保持学报,2012,26(120):125-128.
    陶玉华,黄星,王薛平, 等.广西珍珠湾三种红树林林分土壤碳氮储量的研究[J].广西植物, 2020, 40(3):285-292.
    邵明玉,张连凯,刘朋雨,等.夏季黄土丘陵区不同土地利用方式土壤CO2分布特征及影响因素[J].中国岩溶,2019,38(1):70-79.
    李龙,秦富仓,姜丽娜, 等.区县域尺度土壤全氮的空间分布格局分析[J].生态学报, 2020, 40(5):1572-1579.
    王炎强,毕如田,张吴平,等. 黄土丘陵区煤矿开采对土壤理化性质的影响:以晋城市长河流域为例[J].中国农学通报,2017,33(36):111-118.
    马丽,王青,沈凇涛,等. 岷江上游杂谷脑流域耕作区壤土和粉壤土的理化性质及肥力异质性[J].干旱区资源与环境,2018,32(11):144-149.
    张青青,张桂莲,伍海兵,等. 上海市林地土壤有机碳分布特征及其与土壤理化性质的关系[J].浙江农林大学学报,2019,36(163):40-48.
    张谦,张建国,王丽梅,等. 塔克拉玛干沙漠公路防护林不同咸水滴灌下土壤有机碳与无机碳垂直分布特征[J].西北林学院学报,2019,34(158):7-13.
    李刚,卢楠. 蓄水条件下土壤pH与电导率的空间分布与关系的研究[J].节水灌溉, 2017(268):100-102,109.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1659) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return