• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 40 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
SHI Qipeng, SONG Shuailiang, MENG Jia, ZHENG Huiming. Hydrochemical evolution of karst geothermal water in the Heze uplift geothermal field, Shandong Province[J]. CARSOLOGICA SINICA, 2021, 40(2): 310-318. doi: 10.11932/karst20210209
Citation: SHI Qipeng, SONG Shuailiang, MENG Jia, ZHENG Huiming. Hydrochemical evolution of karst geothermal water in the Heze uplift geothermal field, Shandong Province[J]. CARSOLOGICA SINICA, 2021, 40(2): 310-318. doi: 10.11932/karst20210209

Hydrochemical evolution of karst geothermal water in the Heze uplift geothermal field, Shandong Province

doi: 10.11932/karst20210209
  • Publish Date: 2021-04-25
  • The Heze uplift geothermal field is located in the tectonic unit of the buried uplift, Heze-Yanzhou buried fault uplift, Heze buried uplift, with a total area 6,330 km2. It hosts Ordovician crack karst thermal reservoirs of layering zone-like shape, with water yield of 80-402 m3.h-1 in single wells, depths of water level 20-55 m and wellhead temperatures 45-75 ℃.The thermal reservoir caprocks are Quaternary, Neogene and Permian-Carboniferous with a thickness of 600-2,500 m.Deep faults such as the Liaokao,Juye,Tianqiao and Fushan faults connect heat sources at depth, forming heat source channels. Secondary faults of these major deep faults developed well, nearby which limestone has undergone many tectonic movements and dissolution, resulting in the development of fissure karst which is the circulation, migration channel and water storage space of deep karst hot water as well as the main water source channel.The purpose of this work was to study the evolution characteristics of hydrochemistry of geothermal water.Two sections A-A′ and B-B′ were selected in the geothermal field.Piper,Schoeller and Na-K-Mg equilibrium diagrams and saturation index calculation were used to characterize the distribution and evolution of each chemical index in geothermal water. Results show that along the profiles A-A′ and B-B′, karst water turns from cold into hot, the hydrochemical type evolves from SO4·HCO3-Ca·Mg·Na or SO4·HCO3-Ca·Mg to SO4-Ca·Na and SO4-Ca. Mineralization increases gradually, HCO3-concentration decreases gradually, and SO42-, Ca2+ and K+ concentrations grow gradually. It reflects the evolution and supply characteristics of karst cold water to karst hot water. The karst cold water and hot water samples are located in different areas on the hydrogeochemical trilinear map, which shows that the cold water is supplied to the hot water. With distance supply area from near to far from the supply area, the degree of water rock interaction gradually intensifies, the saturation index gradually increases, and dissolution of karst hot water gradually becomes larger.

     

  • loading
  • [1]
    Ellis A J,Mahon W A J.Geochemistry and geothermal systems[M].New York: Acedemic Press,1977:1-52.
    [2]
    陈宗宇.天津市塘沽低温热储回灌的水—岩相互作用地球化学模拟[J].地球科学,1998,23(5):513-518.
    [3]
    马瑞.碳酸盐岩热储隐伏型中低温热水的成因与水—岩相互作用研究:以山西太原为例[D].武汉:中国地质大学(武汉),2007.
    [4]
    张保建.鲁西北地区地下热水的水文地球化学特征及形成条件研究[D].北京:中国地质大学(北京),2011.
    [5]
    吴晓华,史启朋,马哲民,等.山东省地热资源综合评价(鲁西南)报告[R].济宁:山东省地质矿产勘查开发局第三水文地质工程地质大队,2018.
    [6]
    康凤新,张忠祥,徐军详,等.山东省地热地质条件及开发利用[C]//科学开发中国地热资源高层研讨会论文集.北京:地质出版社,2008:79-83.
    [7]
    徐军祥,康凤新.山东省地热资源[M].北京:地质出版社,2014:404-410.
    [8]
    康凤新,赵季初,秦耀军,等.山东省地热清洁能源综合评价[M].北京:科学出版社,2018:89-93.
    [9]
    马哲民,史启朋,刘肖,等.菏泽(凸起)地热田综合评价报告[R].济宁:山东省鲁南地质工程勘察院,2019.
    [10]
    马致远,李嘉祺,翟美静,等.沉积型和火山型地热流体的同位素水文地球化学对比研究[J].水文地质工程地质,2019,46(6):9-18.
    [11]
    赵贤正,李飞,曾溅辉,等. 霸县凹陷深部地下热水的地球化学特征及其成因[J]. 地学前缘, 2017, 24(3): 210-218.
    [12]
    罗丹,杨平恒,王治祥,等.渝东南断裂型碳酸盐岩地热水的形成特征[J].中国岩溶,2019,38(5):670-681.
    [13]
    杨吉龙,柳富田,贾志,等.河北牛驼镇与天津地热田水化学和氢氧同位素特征及其环境指示意义[J].地球学报,2018,39(1):71-78.
    [14]
    王瑞久.三线图解及其水文地质解释[J].工程勘察,1983,11(6):6-11.
    [15]
    隋海波,康凤新,李常锁,等.水化学特征揭示的济北地热水与济南泉水关系[J].中国岩溶,2017,36(1):49-58.
    [16]
    李志红,胡伏生,周文生,等. 银川地区承压水水化学特征及控制因素[J]. 水文地质工程地质, 2017, 44(2): 31-39.
    [17]
    林韵,高磊,李绍恒,等.广东江门地热水水文地球化学特征及来源分析[J].环境化学,2020,39(2):512-523.
    [18]
    袁建飞. 广东沿海地热系统水文地球化学研究[D].武汉:中国地质大学(武汉),2013.
    [19]
    赵慧.关中盆地地下热水地球化学及其开发利用的环境效应研究[D].西安:长安大学,2009.
    [20]
    李修成,马致远,张雪莲,等.陕西省关中盆地东大地热田成因机制分析[J].中国地质,2016,43(6):2082-2091.
    [21]
    马月花,唐保春,苏生云,等.青海共和盆地地热流体地球化学特征及热储水—岩相互作用过程[J].地学前缘,2020,27(1):123-133.
    [22]
    毛晓敏,刘翔,Barry D A. PHREEQC在地下水溶质反应运移模拟中的应用[J]. 水文地质工程地质, 2004, 31(2):20-24.
    [23]
    焦春春,肖江,皮建高,等. PHREEQC在汤市地热水化学形成作用模拟中的应用[J]. 矿业工程研究, 2018, 33(1):49-53.
    [24]
    唐辉,陈洁,钱会.饱和指数在水—岩作用研究中的应用及其灵敏度分析[J]. 水资源与水工程学报, 2012, 23(6):180-183.
    [25]
    李常锁,武显仓,孙斌,等.济南北部地热水水化学特征及其形成机理[J].地球科学,2018,43(S1):313-325.
    [26]
    赵佳怡,张薇,张汉雄,等.四川巴塘地热田水文地球化学特征及成因[J].水文地质工程地质,2019,46(4):81-89.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1625) PDF downloads(167) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return