Citation: | YAN Fei, DONG Faqin, DAI Qunwei, LI Qiongfang, WANG Fudong, ZENG Jia, CAO Qin, YANG Gang. Influencing factors of the degradation of travertine and its conservation measures under the background of climate change[J]. CARSOLOGICA SINICA, 2021, 40(1): 166-170. doi: 10.11932/karst20210118 |
[1] |
曾振宇, 晏浩, 孙海龙, 等. 云南白水台钙华池出入口水化学和δ13C (DIC)昼夜变化的影响因素及水生光合作用影响比例的计算[J]. 中国岩溶, 2016, 35(6): 605-613.
|
[2] |
Capezzuoli E, Gandin A, Pedley M. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: the state of the art[J]. Sedimentology, 2014, 61(1): 1-21.
|
[3] |
Ford TD, Pedley HM. A review of tufa and travertine deposits of the world[J].Earth-Science Reviews,1996,41(3-4): 117-175.
|
[4] |
Branner JC. The origin of travertine falls and reefs[J]. Science (New York, NY), 1901, 14(344): 184-185.
|
[5] |
Elyahyaoui A, Zarki R, Chiadli A. A method for the rapid radiochemical analysis of uranium and thorium isotopes in impure carbonates[J]. Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, 2003, 58(1): 119-124.
|
[6] |
冯晨旭, 董发勤, 代群威, 等. 黄龙钙华纹层石特征与成因分析[J]. 矿物学报, 2019, 39(1): 55-63.
|
[7] |
Lopez B, Camoin G, Ozkul M, et al. Sedimentology of coexisting travertine and tufa deposits in a mounded geothermal spring carbonate system, Obruktepe, Turkey[J]. Sedimentology, 2017, 64(4): 903-931.
|
[8] |
李其林, 王云, 赵慈平, 等. 云南省香格里拉市下给和天生桥温泉水化学和逸出气CO2释放特征变化[J]. 地震研究, 2019, 42(3): 320-329,455.
|
[9] |
Uysal IT, Unal IE, Shulmeister J, et al. Linking CO2 degassing in active fault zones to long-term changes in water balance and surface water circulation, an example from SW Turkey[J].Quaternary Science Reviews, 2019, 214: 164-177.
|
[10] |
Karabacak V, Uysal IT, Mutlu H, et al. Are U-Th Dates Correlated With Historical Records of Earthquakes? Constraints From Coseismic Carbonate Veins Within the North Anatolian Fault Zone[J]. Tectonics, 2019, 38(7): 2431-2448.
|
[11] |
李永新. 藻类在黄龙钙华景观中的作用[J]. 安徽农业科学, 2011, 39(9): 5433-5435,5449.
|
[12] |
王龙, Latif K, Riaz M, 等. 微生物碳酸盐岩的成因、分类以及问题与展望:来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
|
[13] |
Kampman N, Burnside N M, Shipton Z K, et al. Pulses of carbon dioxide emissions from intracrustal faults following climatic warming[J]. Nature Geoscience, 2012, 5(5): 352-358.
|
[14] |
De Filippis L, Faccenna C, Billi A, et al. Plateau versus fissure ridge travertines from Quaternary geothermal springs of Italy and Turkey: Interactions and feedbacks between fluid discharge, paleoclimate, and tectonics[J]. Earth-Science Reviews, 2013, 123: 35-52.
|
[15] |
Ricketts J W, Ma L, Wagler A E, et al. Global travertine deposition modulated by oscillations in climate[J]. Journal of Quaternary Science, 2019, 34(7): 558-568.
|
[16] |
Billi A, Berardi G, Gratier J P, et al. First records of syn-diagenetic non-tectonic folding in quaternary thermogene travertines caused by hydrothermal incremental veining[J]. Tectonophysics, 2017, 700: 60-79.
|
[17] |
Guerreiro P, Cunha L, Ribeiro C. Central Algarve karst system tufa-related dynamics, Portugal[J]. Journal of Maps, 2016, 12(sup1): 108-114.
|
[18] |
Al?i?ek MC, Al?i?ek H, Altunel E, et al. Comment on “First records of syn-diagenetic non-tectonic folding in Quaternary thermogene travertines caused by hydrothermal incremental veining” by Billi et al. Tectonophysics 700-701(2017) 60-79 [J]. Tectonophysics, 2017, 721: 491-500.
|
[19] |
Rodriguez-Berriguete A, Maria Alonso-Zarza A. Controlling factors and implications for travertine and tufa deposition in a volcanic setting[J].Sedimentary Geology,2019,381: 13-28.
|
[20] |
Dupraz C, Reid RP, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162.
|
[21] |
Rogerson M, Pedley HM, Wadhawan JD, et al. New insights into biological influence on the geochemistry of freshwater carbonate deposits[J]. Geochimica Et Cosmochimica Acta, 2008, 72(20): 4976-4987.
|
[22] |
Shiraishi F, Bissett A, de Beer D, et al. Photosynthesis, respiration and exopolymer calcium-binding in biofilm calcification (Westerhfer and deinschwanger creek, germany)[J]. Geomicrobiology Journal, 2008, 25(2): 83-94.
|
[23] |
董发勤, 李琼芳, 代群威, 等. 黄龙风景区和黄石公园钙华形成环境对比研究[C]//王德滋. 中国矿物岩石地球化学学会第14届学术年会. 南京: 高校地质学报, 2013: 95-96.
|
[24] |
李琼芳, 董发勤, 李骐言, 等. 柠檬酸对黄龙碳酸钙矿化影响的模拟实验研究[J]. 矿物岩石地球化学通报, 2015, 34(2): 294-300.
|
[25] |
陈超, 李琼芳, 张清明, 等. 低温环境下两种氨基酸对碳酸钙矿化影响的研究[J]. 高校地质学报, 2017, 23(4): 606-614.
|
[26] |
Suchy V, Zacharias J, Tsai H C, et al. Relict Pleistocene calcareous tufa of the Chlupacova sluj Cave, the Bohemian Karst, Czech Republic: A petrographic and geochemical record of hydrologically-driven cave evolution[J]. Sedimentary Geology, 2019, 385: 110-125.
|
[27] |
欧阳慧子. 青藏高原南部全新世早—中期气候变化:墨竹工卡钙华碳氧同位素记录[D]. 成都:成都理工大学, 2018.
|
[28] |
唐宇宏, 潘鸿. 贵州马岭河瀑布钙华藻类群落特征及生物岩溶作用[J]. 中国岩溶, 2013, 32(3): 280-286.
|
[29] |
高竞. 地下热水钙华沉积的水化学影响因素和热水钙华微层的气候环境指示意义[D]. 北京:中国地质大学(北京), 2013.
|
[30] |
曹乐, 聂振龙, 刘学全, 等. 巴丹吉林沙漠湖泊钙华的水化学成因[J]. 中国沙漠, 2017, 37(5): 1026-1034.
|
[31] |
严锐,董瑞,龙园,等.全球气候变暖背景下水城县近30a气温与降水变化的新特征[J].中低纬山地气象,2020,44(3):5-12.
|
[32] |
曲迎乐, 高晓清, 陈文, 等. 近50年来我国东、西部地面气温和降水变化对比的初步分析[J]. 高原气象, 2008, 2008(3): 524-529.
|
[33] |
赵传成, 王雁, 丁永建, 等. 西北地区近50年气温及降水的时空变化[J]. 高原气象, 2011, 30(2): 385-390.
|
[34] |
黄荣辉, 徐予红, 周连童. 我国夏季降水的年代际变化及华北干旱化趋势[J]. 高原气象, 1999(4): 465-476.
|
[35] |
Tran H, Rott E, Sanders D. Exploring the niche of a highly effective biocalcifier: calcification of the eukaryotic microalga Oocardium stratum Nageli 1849 in a spring stream of the Eastern Alps[J]. Facies, 2019, 65(3): 3-7.
|
[36] |
张金流, 鲍祥. 黄龙风景区水生藻类生长影响因素研究[J].世界科技研究与发展, 2015, 37(5): 519-521.
|
[37] |
Simsek S, Günay G, Elhatip H, et al. Environmental protection of geothermal waters and travertines at Pamukkale, Turkey[J]. Geothermics,2000, 29(4-5): 557-572.
|
[38] |
Winsborough BM. Diatoms and Benthic Microbial Carbonates[M]. Berlin/Heidelberg: Springer, 2000.
|
[39] |
Lixia L. Factors affecting tufa degradation in jiuzhaigou national nature reserve,Sichuan,China[J]. Water, 2017, 9(9): 702.
|