• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 40 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
DONG Faqin, CHEN Yuheng, DAI Qunwei, ZHENG Fei, LIU Mingxue, JIANG Zhongcheng, ZHANG Qiang, LI Bowen, Alper Baba, Mike O'Driscoll, Andelka Plenkovic-Moraj. Research progress on interfacial crystallization of travertine in secondary organic system[J]. CARSOLOGICA SINICA, 2021, 40(1): 34-43. doi: 10.11932/karst20210104
Citation: DONG Faqin, CHEN Yuheng, DAI Qunwei, ZHENG Fei, LIU Mingxue, JIANG Zhongcheng, ZHANG Qiang, LI Bowen, Alper Baba, Mike O'Driscoll, Andelka Plenkovic-Moraj. Research progress on interfacial crystallization of travertine in secondary organic system[J]. CARSOLOGICA SINICA, 2021, 40(1): 34-43. doi: 10.11932/karst20210104

Research progress on interfacial crystallization of travertine in secondary organic system

doi: 10.11932/karst20210104
  • Publish Date: 2021-02-25
  • The characteristics of biomes and interfacial crystallization by organisms in secondary organic system are summarized in this papar. According to the effects of organisms on carbonate sedimentation, the interfacial crystallization mineralization of travertine by organism in secondary organic system is divided into bio-controlled mineralization and bio-induced mineralization. Five biometabolic activities related to sedimentation of calcium carbonate are described, and the effects of EPS on the crystal type and morphology of calcium carbonate minerals are discussed. In view of existing problems in the researches on travertine, it is suggested that the role of main components of organisms, biomolecules and internal tissues of organisms in the formation or degradation of travertine shall be studied in depth, and the interfacial crystallization of travertine in secondary organic system can be further clarified, so as to provide scientific basis for the protection and treatment measures to prevent travertine from degeneration.

     

  • loading
  • [1]
    Li Q, Dong F, Dai Q, et al. The Microbial Factor of Travertine Deposition between Yellowstone National Park (YNP), USA and Huanglong Scenic, Sichuan[J]. Advanced Materials Research, 2012, 518-523: 136-139.
    [2]
    Li Q, Liu D, Chen C, et al. Experimental and Geochemical Simulation of Nickel Carbonate Mineral Precipitation by Carbonate-laden Ureolytic Fungal Culture Supernatants[J]. Environmental Science: Nano, 2019, 6: 1866-1875.
    [3]
    李华举, 廖长君, 姜殿强,等. 钙华沉积机制的研究现状及展望[J]. 中国岩溶, 2006,25(1): 57-62.
    [4]
    Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth ence Reviews, 2009, 96(3):141-162.
    [5]
    Brasier A T. Searching for travertines, calcretes and speleothems in deep time: Processes, appearances, predictions and the impact of plants[J]. Earth-Science Reviews, 2011.
    [6]
    刘明学, 董发勤, 孙仕勇, 等. 黄龙钙华水体藻多样性及分布规律研究[J].环境科学与技术, 2013, 36(1): 182-186.
    [7]
    汪智军, 殷建军, 蒲俊兵, 等. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
    [8]
    代群威, 党政, 彭启轩, 等. 钙华天然海绵地质体多孔特性及其对水循环调节意义:以四川黄龙为例[J]. 矿物学报, 2019, 39(2): 219-225.
    [9]
    Michel J, Borgomano J, Reijmer J J G. Heterozoan Carbonates: When, Where and Why? A Aynthesis on Parameters Controlling Carbonate Production and Occurrences[J]. Earth-Science Reviews: The International Geological Journal Bridging the Gap between Research Articles and Textbooks, 2018, 182: 50-67.
    [10]
    Fouke B W, Bonheyo G T, Sanzenbacher B, et al. Partitioning of bacterial communities between travertine depositional facies at Mammoth Hot Springs, Yellowstone National Park, U.S.A.[J]. Canadian Journal of Earth Sciences, 2003, 40(11):1531-1548.
    [11]
    Sanchez-Moral S, Portillo M, Janices I, et al. The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in altamira cave.[J]. Geomorphology, 2012, 139(4): 285-292.
    [12]
    田友萍, 何复胜. 贵州盘县风洞藻席蓝藻群落生态初探[J]. 中国岩溶, 1996,15(3): 28-33.
    [13]
    Perri E, Manzo E, Tucker M. E. Multi-scale study of the role of the biofilm in the formation of minerals and fabrics in calcareous tufa[J]. Sedimentary Geology, 2012, 263-264: 16-29.
    [14]
    张朝晖, 陈家宽. 桂西南喀斯特瀑布水生苔藓植物生物多样性与生态沉积类型研究[J].沉积学报, 2007(4): 603-611.
    [15]
    Xie J, Strobel G, Xu W F, et al. Fungi as Architects of the Rimstone Dams in Huanglong, NSD, Sichuan, China[J]. Microbial Ecology, 2017, 73: 29-38.
    [16]
    田友萍, 何复胜. 石灰华的生物成因研究:以四川九寨沟和贵州黄果树等地石灰华为例[J]. 中国岩溶, 1998,17(1): 3-5.
    [17]
    李刚. 高原冷水环境黄龙典型硅藻的钙华复合沉积作用研究[D]. 绵阳:西南科技大学, 2018.
    [18]
    Drysdale R. N, Carthew K. D, Taylor M. P. Larval Caddis-fly Nets and Retreats: a Unique Biosedimentary Paleocurrent Indicator for Fossil Tufa Deposits[J]. Sedimentary Geology, 2003, 161: 207-215.
    [19]
    Willem D M, Nele D B, Willy V. Microbial Carbonate Precipitation in Construction Materials: A review[J]. Ecological Engineering, 2010, 36: 118-136.
    [20]
    Barabesi C, Galizzi A, Mastromei G, et al. Bacillus Subtilis Gene Cluster Involved in Calcium Carbonate Biomineralization[J]. Journal of Bacteriology, 2007, 189: 228-235.
    [21]
    Mann K, Siedler F, Treccani L, Heinemann F, Fritz M. Perlinhibin, a Cysteine-, Histidine-, and Arginine-rich Miniprotein from Abalone (Haliotis laevigata) Nacre, Inhibits in Vitro Calcium Carbonate Crystallization[J]. Biophysical Journal, 2007, 93: 1246-1254.
    [22]
    Aizenberg J, Lambert G, Weiner S, et al. Factors Involved in the Formation of Amorphous and Crystalline Calcium Carbonate: A Study of an Ascidian Skeleton[J]. Journal of the American Chemical Society, 2002, 124: 32-39.
    [23]
    Weiner S, Traub W. X-ray diffraction study of the insoluble organic matrix of mollusk shells[J]. Febs Letters, 1980,111(2): 316.
    [24]
    Feng Q L, Pu G, Pei Y, et al. Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell[J]. Journal of Crystal Growth, 2000, 216(1/4): 459-465.
    [25]
    Brasier A T. Searching for travertines, calcretes and speleothems in deep time: Processes, appearances, predictions and the impact of plants[J]. Earth-Science Reviews, 2011, 104 (4): 213-239.
    [26]
    Liu H, Liu Z, Macpherson G L, et al. Diurnal Hydrochemical Variations in a Karst Spring and Two Ponds, Maolan Karst Experimental Site, China: Biological Pump Effects[J]. Hydrology. 2015, 522: 407-417.
    [27]
    Dupraz C, Visscher P T. Microbial Lithification in Marine Stromatolites and Hypersaline Mats[J]. Trends in Microbiology, 2005, 13: 429-438.
    [28]
    Krajewska B. Urease-aided Calcium Carbonate Mineralization for Engineering Applications: A review[J]. Journal of Advanced Research, 2018, 13: 59-67.
    [29]
    Tourney J, Ngwenya B T. The Role of Bacterial Extracellular Polymeric Substances in Geomicrobiology[J]. Chemical Geology, 2014, 386: 115-132.
    [30]
    Braissant O, Decho A W, Przekop K M, et al. Characteristics and Turnover of Exopolymeric Substances in a Hypersaline Microbial Mat[J]. Fems Microbiology Ecology, 2009, 67: 293-307.
    [31]
    Beer D D, Larkum A W D. Photosynthesis and Calcification in the Calcifying Algae Halimeda Discoidea Studied with Microsensors[J]. Plant, Cell Environment, 2001, 24: 209-217.
    [32]
    Li W, Liu L, Chen W, et al. Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors[J]. Process Biochemistry, 2010, 45(6): 1017-1021.
    [33]
    David C Fernández-Remolar , Preston L J, Mónica Sánchez-Román , et al. Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars[J]. Earth & Planetary ence Letters, 2012, 351-352: 13-26.
    [34]
    Arp G, Reimer A, Reitner J. Microbialite Formation in Seawater of Increased Alkalinity, Satonda Crater Lake, Indonesia[J]. Journal of Sedimentary Research, 2003, 73(1): 105-127.
    [35]
    Sondi I, Matijevi E. Homogeneous Precipitation of Calcium Carbonates by Enzyme Catalyzed Reaction[J]. Journal of Colloid and Interface ence, 2001, 238(1): 208-214.
    [36]
    Stocks-Fischer S, Galinat J K, Bang S S. Microbiological precipitation of CaCO3[J]. Soil Biology & Biochemistry, 1999, 31(11): 1563-1571.
    [37]
    Gagnon A C, Adkins J F, Fernandez D P, et al. F. Sr/Ca and Mg/Ca Vital Effects Correlated with Skeletal Architecture in a Scleractinian Deep-sea Coral and the Role of Rayleigh Fractionation[J]. Earth & Planetary ence Letters, 2007, 261: 280-295.
    [38]
    Chen T, Yu K, Chen T. Sr/Ca-sea Surface Temperature Calibration in the Coral Porites Lutea from Subtropical Northern South China Sea[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2013, 392: 98-104.
    [39]
    Ka?mierczak J, Ittekkot V, Degens E. T. Biocalcification through Time: Environmental Challenge and Cellular Response[J]. Pal?ontologische Zeitschrift, 1985, 59: 15-33.
    [40]
    Wang L, Wang L, Ren X, et al. pH dependence of structure and surface properties of microbial EPS[J]. Environmental ence & Technology, 2012, 46 (2): 737-744.
    [41]
    Paulo C, Dittrich M. 2D Raman spectroscopy study of dolomite and cyanobacterial extracellular polymeric substances from Khor Al-Adaid sabkha (Qatar) [J]. Journal of Raman Spectroscopy, 2013, 44 (11): 1563-1569.
    [42]
    Sun S, Dong F, Ehrlich H, et al. Metabolic Influence of Psychrophilic Diatoms on Travertines at the Huanglong Natural Scenic District of China[J]. International journal of environmental research and public health, 2014, 11: 13084-13096.
    [43]
    张存凯. 黄龙藻类群落结构分析及优势类群对碳酸钙沉积的影响[D]. 绵阳:西南科技大学, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1611) PDF downloads(192) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return