• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
BAI Jie,XING Yingchun,GAO Wanru,et al.Environmental DNA: An emerging tool in studying cave organisms[J].Carsologica Sinica,2021,40(06):1014-1020. doi: 10.11932/karst2020y48
Citation: BAI Jie,XING Yingchun,GAO Wanru,et al.Environmental DNA: An emerging tool in studying cave organisms[J].Carsologica Sinica,2021,40(06):1014-1020. doi: 10.11932/karst2020y48

Environmental DNA: An emerging tool in studying cave organisms

doi: 10.11932/karst2020y48
Funds:

 NSFC-31972868, 31970382

 2019HJ2096001006

 2017B001, 2020A001

  • Received Date: 2020-04-07
  • Publish Date: 2021-12-25
  • China has enormous caves with diverse cave organisms. Many cave creatures have small population size and limited distribution. Therefore, the traditional survey on cave fauna may harm some rare or endangered cave species. Its low efficiency could also restrict the studies of cave biodiversity and conservation. As an emerging survey method, environmental DNA (eDNA) can be used to extract the trace DNA of cave organisms from the environment and to qualitatively or quantitatively investigate the cave biodiversity with the technology such as PCR. After reviewing the principles of eDNA, its advantages and current research status, we put forward a basic process for the application of eDNA in cave biological surveys. We expect that the eDNA can play an important role in future studies of biospeleology in China. To achieve this aim, a thorough database of DNA barcodes and a classic taxonomy for Chinese cave organisms are urgently needed.

     

  • BAI Jie,XING Yingchun,GAO Wanru,et al.Environmental DNA: An emerging tool in studying cave organisms[J].Carsologica Sinica,2021,40(06):1014-1020.
  • 李大通, 罗雁. 中国碳酸盐岩分布面积测量 [J]. 中国岩溶, 1983, 2(2): 147-150.
    王世杰, 张信宝, 白晓永. 中国南方喀斯特地貌分区纲要 [J]. 山地学报, 2015, 33(6):641-648.
    袁道先, 蒋勇军, 沈立成, 等. 现代岩溶学 [M]. 北京: 科学出版社, 2016.
    陈伟海. 洞穴研究进展综述 [J]. 地质论评, 2006, 52(6): 783-792.
    张远海, 朱德浩. 中国大型岩溶洞穴空间分布及演变规律 [J]. 桂林理工大学学报, 2012, 32(1): 20-28.
    LiuW, WynneJ J. Cave millipede diversity with the description of six new species from Guangxi, China [J]. Subterranean Biology, 2019, 30:57-94.
    GolovatchS I. Cave Diplopoda of southern China with reference to millipede diversity in Southeast Asia [J]. Zookeys, 2015, 510(510): 79-94.
    TianM-Y. A new species of the subterranean genus Oodinotrechus Uéno, 1998, from northern Guangxi, China, with additions to the generic diagnosis (coleoptera: carabidae: trechinae) [J]. Journal of Natural History, 2014, 48(33-34): 2097-2104.
    TianM, LuoX. A new species of the highly modified hypogean genus Giraffaphaenops Deuve, 2002 (Coleoptera: Carabidae: Trechinae) [J]. Zootaxa, 2015, 3911(4): 581-588.
    TianM, HuangS, WangX, et al. Contributions to the knowledge of subterranean trechine beetles in southern China’s karsts: five new genera (Insecta, Coleoptera, Carabidae, Trechinae) [J]. Zookeys, 2016, 564:121-156.
    ZhaoY, GozlanR E, ZhangC. Out of sight out of mind: current knowledge of Chinese cave fishes [J]. Journal of Fish Biology, 2011, 79(6): 1545-1562.
    MaL, ZhaoY, YangJ X. Cavefish of China [M]//White W B, Culver D C, Pipan T. Encyclopedia of caves (3rd edition). London: Academic Press, 2019: 237-254.
    NiemillerM L, BichuetteM E, ChakrabartyP, et al. Cavefishes [M]//White W B, Culver D C, Pipan T. Pipan. Encyclopedia of caves (3rd edition). London: Academic Press,2019: 227-236.
    赵亚辉, 张春光. 洞穴鱼类:概念、多样性和研究进展 [J]. 生物多样性, 2006, 14(5): 451-460.
    ParzefallJ. Cave Fishes: The consequences of the Life in Darkness [M]//Sébert P, Onyango D W, Kapoor B G. Fish life in special environments. Enfield: Science Publishers,2008: 53-81.
    MammolaS, CardosoP, CulverD C, et al. Scientists' warning on the conservation of subterranean ecosystems [J]. BioScience, 2019, 69(8): 641-650.
    MammolaS, PianoE, CardosoP, et al. Climate change going deep: The effects of global climatic alterations on cave ecosystems[J].The Anthropocene Review,2019, 6(1-2): 98-116.
    蒋志刚, 江建平, 王跃招, 等. 中国脊椎动物红色名录 [J]. 生物多样性, 2016, 24(5): 500-551.
    GoričkiŠ. Environmental DNA as a conservation tool [M]//White W B, Culver D C, Pipan T. Encyclopedia of Caves (3rd edition). London: Academic Press, 2019: 387-793.
    PedersenM W, OverballeP S, ErminiL, et al. Ancient and modern environmental DNA[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2015, 370(1660):20130383.
    OlsenG J. Microbial ecology and evolution: A ribosomal RNA approach [J]. Annual Reviews of Microbiology, 1986, 40:337-365.
    PaceN R, StahlD A, LaneD J, et al. The analysis of natural microbial populations by ribosomal RNA sequences [M]//Marshall K C. Advances in Microbial Ecology. Boston, MA: Springer US, 1986:1-55.
    WillerslevE, HansenA J, BinladenJ, et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments [J]. Science, 2003, 300(5620): 791-795.
    BhaduryP, AustenM C, BiltonD T, et al. Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes [J]. Marine Ecology Progress Series, 2006, 320:1-9.
    TaberletP, BoninA, ZingerL, et al. Environmental DNA: for biodiversity research and monitoring [M]. Oxford: Oxford University Press, 2018:9-13.
    WillerslevE, HansenA J, ChristensenB, et al. Diversity of holocene life forms in fossil glacier ice [J]. Proceedings of the National Academy of Sciences, 1999, 96(14): 8017-8021.
    FicetolaG F, MiaudC, PompanonF, et al. Species detection using environmental DNA from water samples [J]. Biology Letters, 2008, 4(4):423-425.
    李萌, 尉婷婷, 史博洋, 等. 环境DNA技术在淡水底栖大型无脊椎动物多样性监测中的应用 [J]. 生物多样性, 2019, 27(5): 480-490.
    ShokrallaS, SpallJ L, GibsonJ F, et al. Next-generation sequencing technologies for environmental DNA research [J]. Molecular Ecology, 2012, 21(8): 1794-1805.
    ThomsenP F, WillerslevE. Environmental DNA-an emerging tool in conservation for monitoring past and present biodiversity [J]. Biological Conservation, 2015, 183:4-18.
    TaberletP, CoissacE, HajibabaeiM, et al. Environmental DNA [J]. Molecular Ecology, 2012, 21(8):1789-1793.
    ValentiniA, TaberletP, MiaudC, et al. Next-Generation monitoring of aquatic biodiversity using environmental DNA metabarcoding [J]. Molecular Ecology,2016,25(4):929-942.
    EvansN T, ShireyP D, WieringaJ G, et al. Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing [J]. Fisheries, 2017, 42(2): 90-99.
    GarganL M, MoratoT, PhamC K, et al. Development of a sensitive detection method to survey pelagic biodiversity using eDNA and quantitative PCR: a case study of devil ray at seamounts [J]. Marine Biology, 2017, 164(5):112-119.
    GoldbergC S, PilliodD S, ArkleR S, et al. Molecular detection of vertebrates in stream water: a demonstration using rocky mountain tailed frogs and idaho giant salamanders [J]. Plos One, 2011, 6(7): e22746.
    PedersenM W, GinolhacA, OrlandoL, et al. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa [J].Quaternary Science Reviews,2013,75:161-168.
    BoussarieG, BakkerJ, WangensteenO S, et al. Environmental DNA illuminates the dark diversity of sharks [J]. Science Advances, 2018, 4(5): eaap9661.
    FranklinT W, MckelveyK S, GoldingJ D, et al. Using environmental DNA methods to improve winter surveys for rare carnivores: DNA from snow and improved noninvasive techniques [J]. Biological Conservation, 2019, 229:50-58.
    DejeanT, ValentiniA, DuparcA, et al. Persistence of environmental DNA in freshwater ecosystems [J]. Plos One, 2011, 6(8): e23398.
    PedersenM W, RuterA, SchwegerC, et al. Postglacial viability and colonization in north America's ice-free corridor [J]. Nature, 2016, 537(7618): 45-49.
    TringeS G, RubinE M. Metagenomics: DNA sequencing of environmental samples [J]. Nature Reviews Genetics, 2005, 6(11): 805-814.
    IUCN. The IUCN red list of threatened species. Version 2020-1[J]. IUCN Red List of Threatened Species (2020), 2020.
    GoričkiŠ, StankovićD, SnojA, et al. Environmental DNA in subterranean biology: range extension and taxonomic implications for Proteus [J]. Scientific Reports, 2017, 7(1): 1-11.
    AljančičG, GoričkiŠ, NăpăruşM, et al. Endangered Proteus: combining DNA and GIS analyses for its conservation [J]. Dinaric Karst Poljes-Floods for Life, 2014, 70: 5.
    VörösJ, MártonO, SchmidtB R, et al. Surveying Europe’s only cave-dwelling chordate species (Proteus Anguinus) using environmental DNA [J]. Plos One, 2017, 12(1): e0170945.
    NiemillerM L, PorterM L, KeanyJ, et al. Evaluation of eDNA for groundwater invertebrate detection and monitoring: a case study with endangered Stygobromus (Amphipoda: Crangonyctidae) [J]. Conservation Genetics Resources, 2018, 10(2): 247-257.
    FraserC I, ConnellL, LeeC K, et al. Evidence of plant and animal communities at exposed and subglacial (cave) geothermal sites in Antarctica [J]. Polar Biology, 2018, 41(3): 417-421.
    MacaladyJ L, DattaguptaS, SchaperdothI, et al. Niche differentiation among sulfur-oxidizing bacterial populations in cave waters [J]. The Isme Journal, 2008, 2(6): 590-601.
    CheepthamN. Advances and Challenges in Studying Cave Microbial Diversity [M]. Cave Microbiomes: A Novel Resource for Drug Discovery. Springer. 2013: 1-34.
    TsujiS, TakaharaT, DoiH, et al. The detection of aquatic macroorganisms using environmental DNA analysis-a review of methods for collection, extraction, and detection [J]. Environmental DNA, 2019, 1(2): 99-108.
    BohmannK, EvansA, GilbertM T P, et al. Environmental DNA for wildlife biology and biodiversity monitoring [J]. Trends in Ecology & Evolution, 2014, 29(6): 358-367.
    ElenaV, JonasB, SimonJ G, et al. Novel universal primers for metabarcoding environmental DNA surveys of marine mammals and other marine vertebrates [J]. Environmental DNA, 2020, 2(4):460-467.
    HebertP D, CywinskaA, BallS L, et al. Biological identifications through DNA barcodes [J]. Proceedings of the Royal Society of London Series B: Biological Sciences, 2003, 270(1512): 313-321.
    HollingsworthM L, AndraC A, ForrestL L, et al. Selecting barcoding loci for plants: evaluation of seven candidate loci with species‐level sampling in three divergent groups of land plants[J].Molecular Ecology Resources,2009,9(2):439-457.
    BellemainE, CarlsenT, BrochmannC, et al. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases [J]. BMC Microbiology, 2010, 10(1): 189.
    SchochC L, SeifertK A, HuhndorfS, et al. Nuclear ribosomal internal transcribed spacer (its) region as a universal DNA barcode marker for fungi [J]. Proceedings of the National Academy of Sciences, 2012, 109(16): 6241-6246.
    RiazT, ShehzadW, ViariA, et al. Ecoprimers: inference of new DNA barcode markers from whole genome sequence analysis [J]. Nucleic Acids Research, 2011, 39(21): 145.
    BrownW M, WilsonG A C. Rapid evolution of animal mitochondrial DNA [J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(4):1967-1971.
    LatellaL. Chapter 16-Biodiversity: China [M]//White W B, Culver D C, Pipan T. Encyclopedia of caves (3rd edition). London: Academic Press, 2019: 127-135.
    赵亚辉, 张春光. 中国特有金线鲃属鱼类:物种多样性、洞穴适应、系统演化和动物地理 [M]. 北京: 科学出版社, 2009.
    TianM, HuangS, WangX, et al. Contributions to the knowledge of subterranean trechine beetles in southern China's karsts: five new genera (Insecta, Coleoptera, Carabidae, Trechinae) [J]. Zookeys, 2016, 564(3):121-156.
    陈善元, 张仁东, 李维贤, 等. 六种鱼巴亚科鱼类线粒体细胞色素b基因序列分析 [J]. 云南大学学报(自然科学版), 2003, 25(5): 453-457.
    XiaoC, LiM, LiW, et al. Mitochondrial DNA variation in two subspecies of Sinocyclocheilus as revealed by DNA sequences [J]. Journal of Yunnan University (Natural Sciences), 1998, 20(3): 218-220.
    XiaoH, ChenS Y, LiuZ M, et al. Molecular phylogeny of Sinocyclocheilus (Cypriniformes: Cyprinidae) inferred from mitochondrial DNA sequences [J]. Molecular Phylogenetics and Evolution, 2005, 36(1): 67-77.
    李雪健. 中国条鳅科洞穴鱼类的经典分类、适应演化和动物地理 [D]. 上海:上海海洋大学, 2018.
  • Relative Articles

    [1]XIAREKEYAMU·Yitiniyazi, DONG Faqin, LI Qiongfang, AN Dejun, DAI Qunwei, ZHANG Qiang, RAO Hanyun, REN Yazhen, LIU Fengqi, LIU Mingxue. Composition and diversity of microbial communities in high-altitude karst soil[J]. CARSOLOGICA SINICA, 2024, 43(2): 364-378. doi: 10.11932/karst2024y015
    [2]YAN Jiahui, QIU Jiangmei, LI Qiang. Response of soil microbial biomass carbon and nitrogen to vegetation succession in different soil depths of karst fault basin[J]. CARSOLOGICA SINICA, 2023, 42(5): 1098-1105. doi: 10.11932/karst20230519
    [3]ZHU Qidi, SHI Fuming. Species diversity and adaptation of cave crickets in China[J]. CARSOLOGICA SINICA, 2021, 40(6): 1026-1031. doi: 10.11932/karst20210612
    [4]WEI Xinghu, LEI Li, LIU Shujuan, GUAN Gongcou. Analysis on the absorbing, transfer, restoration and adaptation mechanism of calcium in different peak forest plants in northern Guangdong Province,China[J]. CARSOLOGICA SINICA, 2017, 36(3): 368-376. doi: 10.11932/karst20170311
    [5]YANG Zhen-hua, LI Po, WU Ke-hua. The characteristics of karst cave ancient floodplain sediment and environment evolution: A case study in Shanwang cave[J]. CARSOLOGICA SINICA, 2016, 35(4): 394-401. doi: 10.11932/karst20160406
    [6]ZHANG Cheng. Diel aqueous chemistry and biogeochemical processes in streams of karst areas[J]. CARSOLOGICA SINICA, 2015, 34(1): 1-8. doi: 10.11932/karst20150101
    [7]JI ye, ZHANG Zhao-hui. Biodiversity of bryophytes and their characteristics of ecological distribution in the second Lindai karst bauxite area[J]. CARSOLOGICA SINICA, 2015, 34(6): 599-606. doi: 10.11932/karst20150609
    [8]SHEN Li-na, HOU Man-fu, ZHANG Yuan-hai, CHEN Wei-hai, XIANG Chui-sheng, LI Xiao-na. Species diversity of rare and endangered species and endemic species and conservation of Guilin Karst World Heritage Nominated Property[J]. CARSOLOGICA SINICA, 2014, 33(1): 91-98. doi: 10.3969/j.issn.1001-4810.2014.01.014
    [9]YU Jian-guo, DU Wen-yue, WANG Hua, ZHOU Xiao-hong. Uncertainty evaluations on the measurement of “carbon” in the research on karst carbon sink effect: A case for dissolved inorganic carbon[J]. CARSOLOGICA SINICA, 2012, 31(3): 333-338. doi: 10.3969/j.issn.1001-4810.2012.03.016
    [10]SHI Wen-qiang, LUO Shu-wen, DENG Ya-dong. Preliminary study on technical specification system of karst cave survey[J]. CARSOLOGICA SINICA, 2012, 31(3): 327-332. doi: 10.3969/j.issn.1001-4810.2012.03.015
    [11]LIU Ming, WANG Qian, MA Jian-rong, ZHAN Jin-xing, YIN Wei-rong, ZHI Chong-yuan. Preliminary study on diatom biodiversity and environment in Tianhetan dry cave, Guiyang[J]. CARSOLOGICA SINICA, 2009, 28(3): 324-328. doi: 10.3969/j.issn.1001-4810.2009.03.016
    [12]LIU Yan, ZHAO Min, LI Zhong-yi, JIANG Jian. Adaptation of Rhus chinensis to drought stress in karst area: Insights from anatomical structure of leaf[J]. CARSOLOGICA SINICA, 2008, 27(3): 235-239. doi: 10.3969/j.issn.1001-4810.2008.03.007
    [13]SHEN Li-na, DENG Xin-hui, JIANG Zhong-cheng, QIN Xing-ming. Features of karst soil microbe at different vegetation successions— A Case study on the peak cluster depression in Nongla, Mashan, Guangxi[J]. CARSOLOGICA SINICA, 2007, 26(4): 310-314. doi: 10.3969/j.issn.1001-4810.2007.04.006
    [14]WANG Zhi-hui, ZHANG Zhao-hui, LI Jian-hua. Biodiversity on karst deposits at Pipatan waterfall[J]. CARSOLOGICA SINICA, 2007, 26(2): 178-182. doi: 10.3969/j.issn.1001-4810.2007.02.014
    [15]CHEN Hu, XIONG Kang-ning, Leonardo Latella. STUDY ON ANIMAL-DIVERSITY AND HABITATS OF THE ANIMAL IN KARST CAVES IN GUIZHOU— A Case Study from Honglin Area, Qianxi County[J]. CARSOLOGICA SINICA, 2005, 24(1): 56-64. doi: 10.3969/j.issn.1001-4810.2005.01.009
    [16]LI Dao-hong, CHEN De-niu, LUO Tai-chang, LUO Rong, PENG Tao. A PRELIMINARY STUDY ON SPECIES DIVERSITY AND DISTRIBUTION OF SNAILS IN CAVES OF GUIZHOU PROVINCE[J]. CARSOLOGICA SINICA, 2003, 22(3): 212-218. doi: 10.3969/j.issn.1001-4810.2003.03.007
    [17]Ran Jingcheng, Chen Huiming. A SURVEY OF SPELEOBIOLOGICAL STUDIES IN CHINA[J]. CARSOLOGICA SINICA, 1998, 17(2): 151-159.
    [18]Wang Fuxing, Cao Jianhua, Huang Junfa. BIOKARST IN CAVE TWILIGHT ZONES[J]. CARSOLOGICA SINICA, 1998, 17(1): 41-48.
    [19]Wang Fuxing, Cao Jianhua. A SURVEY OF BIOSPELEOLOGY ABROAD[J]. CARSOLOGICA SINICA, 1997, 16(3): 259-267.
    [20]Zhou Xuansen. STUDY ON REGIONAL DISTRIVUTION OF CAVES IN ZHEJIANG[J]. CARSOLOGICA SINICA, 1992, 11(1): 43-50.
  • Cited by

    Periodical cited type(3)

    1. 赵娜,杨刚,吴祖立,宋超,熊敏思,赵峰,张涛. 环境DNA技术发展及其在长江流域水生生态学领域的应用研究进展. 海洋渔业. 2024(01): 119-128 .
    2. 周彦伶,杨晓霞. 基于AHP-灰色聚类方法的溶洞研学旅行利益相关者优先序研究-以重庆市芙蓉洞为例. 中国岩溶. 2023(03): 603-615 . 本站查看
    3. 赵阳,张媛媛,赵亚辉. 中国洞穴鱼类濒危等级评估——以两种国家重点保护鱼类为例. 中国岩溶. 2021(06): 1032-1037 . 本站查看

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 45.1 %FULLTEXT: 45.1 %META: 51.4 %META: 51.4 %PDF: 3.5 %PDF: 3.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.4 %其他: 15.4 %Central District: 0.0 %Central District: 0.0 %China: 5.5 %China: 5.5 %San Mateo: 0.0 %San Mateo: 0.0 %上海: 20.0 %上海: 20.0 %东莞: 0.0 %东莞: 0.0 %东营: 0.0 %东营: 0.0 %中卫: 0.2 %中卫: 0.2 %临沂: 0.0 %临沂: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.1 %保定: 0.1 %北京: 1.6 %北京: 1.6 %南京: 0.0 %南京: 0.0 %南充: 0.1 %南充: 0.1 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %厦门: 0.1 %厦门: 0.1 %呼和浩特: 0.0 %呼和浩特: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %商洛: 0.0 %商洛: 0.0 %天津: 0.4 %天津: 0.4 %娄底: 0.0 %娄底: 0.0 %宣城: 0.0 %宣城: 0.0 %崇左: 1.0 %崇左: 1.0 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %开封: 0.0 %开封: 0.0 %扬州: 0.2 %扬州: 0.2 %昆明: 0.2 %昆明: 0.2 %曲靖: 0.0 %曲靖: 0.0 %杭州: 0.1 %杭州: 0.1 %武汉: 0.1 %武汉: 0.1 %济源: 0.0 %济源: 0.0 %温州: 0.1 %温州: 0.1 %漯河: 0.1 %漯河: 0.1 %珠海: 0.6 %珠海: 0.6 %石家庄: 0.0 %石家庄: 0.0 %福州: 0.0 %福州: 0.0 %纽约: 1.4 %纽约: 1.4 %聊城: 0.0 %聊城: 0.0 %芒廷维尤: 0.8 %芒廷维尤: 0.8 %莆田: 0.0 %莆田: 0.0 %衡水: 0.0 %衡水: 0.0 %西宁: 2.5 %西宁: 2.5 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.5 %贵阳: 0.5 %贺州: 0.0 %贺州: 0.0 %辽源: 0.0 %辽源: 0.0 %运城: 0.2 %运城: 0.2 %连云港: 0.0 %连云港: 0.0 %遵义: 0.1 %遵义: 0.1 %邵阳: 0.0 %邵阳: 0.0 %郑州: 0.0 %郑州: 0.0 %重庆: 0.2 %重庆: 0.2 %银川: 0.0 %银川: 0.0 %锦州: 0.0 %锦州: 0.0 %长春: 0.0 %长春: 0.0 %青岛: 0.0 %青岛: 0.0 %驻马店: 47.2 %驻马店: 47.2 %黔东南: 0.0 %黔东南: 0.0 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %其他Central DistrictChinaSan Mateo上海东莞东营中卫临沂佛山保定北京南京南充南宁南昌厦门呼和浩特哥伦布商洛天津娄底宣城崇左巴音郭楞开封扬州昆明曲靖杭州武汉济源温州漯河珠海石家庄福州纽约聊城芒廷维尤莆田衡水西宁诺沃克贵阳贺州辽源运城连云港遵义邵阳郑州重庆银川锦州长春青岛驻马店黔东南齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1366) PDF downloads(93) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return