• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
CHANG Wei, TAN Jiahua, HUANG Kun, CHENG Xi, HUANG Zhen, WAN Junwei. Application of groundwater multi-element tracing tests to water hazard prediction of karst tunnels: An example of the Lanhua tunnel on the Zhangjiajie-Jishou-Huaihua high-speed railway[J]. CARSOLOGICA SINICA, 2020, 39(3): 400-408. doi: 10.11932/karst2020y27
Citation: CHANG Wei, TAN Jiahua, HUANG Kun, CHENG Xi, HUANG Zhen, WAN Junwei. Application of groundwater multi-element tracing tests to water hazard prediction of karst tunnels: An example of the Lanhua tunnel on the Zhangjiajie-Jishou-Huaihua high-speed railway[J]. CARSOLOGICA SINICA, 2020, 39(3): 400-408. doi: 10.11932/karst2020y27

Application of groundwater multi-element tracing tests to water hazard prediction of karst tunnels: An example of the Lanhua tunnel on the Zhangjiajie-Jishou-Huaihua high-speed railway

doi: 10.11932/karst2020y27
  • Publish Date: 2020-06-25
  • Tunnel water inrush is a common geological hazard during the tunnel construction in karst areas. Thus, it is of great significance to clarify the spatial relationship between the tunnel and karst groundwater system, especially the spatial relationship with the underground river course, which is the key to prevention and control of water hazard in the karst tunnel. This paper presents an example on this issue, the Lanhua tunnel on the Zhangjiajie-Jishou-Huaihua high-speed railway. On the basis of karst hydrogeological investigation and rainfall-spring discharge dynamic monitoring, groundwater multi-element tracing tests were conducted at the concentrated recharge points of groundwater in the area. The spatial distribution of underground river courses and its relationship with the Lanhua tunnel were clarified, the location of water damage in the tunnel was determined and the maximum water inflow was predicted, which provides a hydrogeological basis for the prevention and control of the tunnel water hazard. The results show that,(1)The Lanhua tunnel and adjacent areas host exposed Cambrian carbonate rocks, which are characterized by peak clusters and depression landforms, with highly developed surface and underground karst. (2) The concentration curves of four groups of groundwater multi-element tracing tests are all single-peak symmetrical forms, the tracer recovery rate is more than 68%, and the largest groundwater flow rate is 387 m·h-1, indicating that the pipeline development in the tunnel site area is unobstructed. (3) There are two independent underground river systems, namely the Lanhua cave system and the Daiye cave system. The three karst water sub-underground river systems of No.1, 2 and 3 belong to the Lanhua cave system, while the No.4 karst water sub-underground river system belongs to the Daiye cave system. (4) The No.4 karst groundwater system will not pose a threat of tunnel inrush water, because it does not intersect with the Lanhua tunnel in plane and section. (5) The Lanhua cave underground water system can be divided into two sections, the upstream section and downstream section, with the karst window in the middle of the Lanhua underground river as the boundary. The No.1 and 2 karst water systems belong to the upstream section, and the No.3 karst water system belongs to the downstream section. The upstream section of the Lanhua cave system does not intersect with the Lanhua tunnel in plane and section, and it will not pose a threat to the inrush water of the Lanhua tunnel.The No.3 karst water system intersects with the tunnel in plane (the intersection mileage is DK60 + 100), which may create a risk of water inrush in the tunnel. (6) Based on the high resolution rainfall-hydrological dynamic monitoring data, the rainfall infiltration coefficient method is used to predict that the maximum water inflow of No.3 karst water system pipeline of the tunnel is 70,800 m3·d-1under extremely heavy rainstorm conditions.

     

  • [1]
    曹建文,夏日元.西南岩溶石山地区不同类型地下河开发利用模式探讨[J].中国岩溶, 2017,36(5):609-617.
    [2]
    陈宏峰, 夏日元, 梁彬. 鄂西齐岳山地区岩溶发育特征及其对隧道涌水的影响[J]. 中国岩溶, 2003, 22(4): 282-286.
    [3]
    刘招伟, 何满潮, 王树仁. 圆梁山隧道岩溶突水机理及防治对策研究[J].岩土力学, 2006, 27(2):58-62.
    [4]
    金新锋,夏日元, 梁彬.宜万铁路马鹿箐隧道岩溶突水来源分析[J].水文地质工程地质, 2007,34(2):71-74.
    [5]
    邬立, 万军伟, 陈刚,等.宜万铁路野三关隧道“8.5”突水事故成因分析[J]. 中国岩溶, 2009, 28(2):212-218.
    [6]
    徐红星, 邓谊明.野三关隧道DK 124+602突水相关水文地质分析[J]. 铁道工程学报, 2010, 27(4):29-34.
    [7]
    张小华, 刘清文. 武隆隧道暗河突水特点与整治技术分析[J].现代隧道技术,2005, 42(3):59-64.
    [8]
    关义涛, 徐宗苏, 张海军,等. 毛坝1号隧道涌水成因机制分析[J].工程地球物理学报, 2010, 7(4):514-518.
    [9]
    范威, 王川, 金晓文,等. 吉莲高速公路钟家山隧道涌突水条件分析[J]. 水文地质工程地质, 2015, 42(2):38-43.
    [10]
    罗明明, 黄荷, 尹德超,等. 基于水化学和氢氧同位素的峡口隧道涌水来源识别[J]. 水文地质工程地质, 2015, 42(1): 7-13.
    [11]
    邓谊明, 汪继锋. 八字岭隧道牛鼻子暗河示踪试验成果分析[J]. 铁道勘察, 2007, 33(3):11-14.
    [12]
    田清朝, 万军伟, 黄琨, 等. 高家坪隧道岩溶水系统识别及涌水量预测[J]. 安全与环境工程, 2016, 23(5):13-19.
    [13]
    於开炳, 徐蔓, 严竞雄, 等. 地下水示踪试验在岩溶隧道勘察中的应用:以利万高速齐岳山隧道为例[J]. 工程勘察, 2017, 45(10): 46-51.
    [14]
    陈峰, 杨平恒, 詹兆君, 等. 高分辨率示踪技术和定量计算在岩溶含水介质研究中的应用[J]. 珠江水运, 2018 (10): 38-39.
    [15]
    徐尚全, 王鹏, 焦杰松, 等. 高精度在线示踪技术在岩溶地下水文调查中的应用[J]. 工程勘察, 2013 (2): 40-44.
    [16]
    袁伟,王川.贵州盘县乐民河流域三股水岩溶泉水文地质条件分析[J].地质学刊,2017, 41(4): 655-662.
    [17]
    王开然,姜光辉,郭芳,等.桂林东区峰林平原岩溶地下水示踪试验与分析[J].现代地质, 2013, 27(2): 454-459.
    [18]
    曾莘茹,姜光辉,郭芳,等.桂林甑皮岩洞穴遗址地下水示踪及污染来源分析[J]. 中国岩溶, 2016, 35(3): 245-253.
    [19]
    程烯,万军伟,黄琨,等.荧光示踪剂的干扰实验研究[J].中国岩溶,2019,38(5): 795-803.
    [20]
    智刚. 黔张常铁路某隧道工程水文地质勘察分析及涌水量预测[J]. 路基工程, 2016 (5): 202-206.
    [21]
    贺玉龙, 张光明, 杨立中.铁路岩溶隧道涌水量预测常用方法的比较[J]. 铁道建筑, 2012 (4): 68-71.
  • Relative Articles

    [1]YAO Shasha, ZHANG Yi, WANG Xinwen, LI Xianheng, XU Jiangkun, GUO Fagui, MENG Yan. Analysis on the hydraulic connection and medium characteristics between tunnels and karst springs by tracer tests: A case study of Guanshan tunnel[J]. CARSOLOGICA SINICA, 2024, 43(1): 25-32. doi: 10.11932/karst20240102
    [2]ZHAO Zhihao, WANG Kongwei, ZHOU Zhun, LIU Shiyuan, ZHANG Kaiyuan, WANG Lan. Karst hydrogeological survey and tracing of Zhangyukeng phosphogypsum repository[J]. CARSOLOGICA SINICA, 2023, 42(3): 413-424. doi: 10.11932/karst2023y017
    [3]ZOU Yinxian, CHU Xuewei, DUAN Xianqian, LIU Pu, WANG Zhongmei, WANG Yiwei. Application of different time series models to the prediction for mine water inflow in karst mountainous areas[J]. CARSOLOGICA SINICA, 2023, 42(6): 1237-1246. doi: 10.11932/karst2023y031
    [4]LUO Yiming, CHENG Jianmei, XU Wenjie, BA Jinghui, HUANG Shengcai, DUAN Tianyu. Analysis of water inflow conditions and prediction for water inflow of deep-buried tunnels in the karst area of Southwest China: Taking Dapozi tunnel of central Yunnan Water Diversion Project as an example[J]. CARSOLOGICA SINICA, 2023, 42(6): 1224-1236. doi: 10.11932/karst20230608
    [5]DENG Zhong, LIAO Peitao, QIN Pingliang, TANG Yongchen, KANG Zhiqiang. Influence of the Datengxia reservoir on water inrusch amount of the Panlong lead-zinc mine in Guangxi[J]. CARSOLOGICA SINICA, 2021, 40(2): 198-204. doi: 10.11932/karst20210202
    [6]ZHANG Lang, LI Jun, PAN Xiaodong, HUANG Xiaorong, PENG Cong. Tracer test and analysis of groundwater system in a karst area of southwest China[J]. CARSOLOGICA SINICA, 2020, 39(1): 42-47. doi: 10.11932/karst2019y36
    [7]CHENG Xi, WAN Junwei, HUANG Kun, XIANG Lilei, HE Xinhui. Experimental study on the interference of fluorescent tracer[J]. CARSOLOGICA SINICA, 2019, 38(5): 795-803. doi: 10.11932/karst20190516
    [8]ZHAO Yi, LI Yanqing, QIN Xingming, HONG Tao, CHENG Ruirui, LAN Funing. Tracer tests on distribution and structural characteristics of karst channels in Nandong underground river drainage[J]. CARSOLOGICA SINICA, 2017, 36(2): 226-233. doi: 10.11932/karst20170210
    [9]Lyu Quanbiao, HU Xiaonong, CAO Jianhua, HUANG Fen, ZHU Hao. Aquifer structure of karst areas derived from borehole pumping and tracer tests[J]. CARSOLOGICA SINICA, 2017, 36(5): 727-735. doi: 10.11932/karst2017y29
    [10]LI Duo, WEI Aihua, JIA Lei, CHEN Kang. Prediction of water inflow in karst-fracture of Fushan copper mine,Shandong Province,China[J]. CARSOLOGICA SINICA, 2017, 36(3): 319-326. doi: 10.11932/karst20170305
    [11]REN Yanghang, MA Mingguo, ZHANG Xia, CAI Yue, YOU Maochao. Dynamic monitoring of vegetation and the impact of land use/cover change in the topical karst rocky desertification areas[J]. CARSOLOGICA SINICA, 2016, 35(5): 550-556. doi: 10.11932/karst20160511
    [12]FENG Geng-chen, HAO Jun-jie, TAN Jun, XU Su-juan. Application of Visual Modflow in predicting shaft water inflow in the Baijian iron mining area[J]. CARSOLOGICA SINICA, 2011, 30(3): 271-277. doi: 10.3969/j.issn.1001-4810.2011.03.006
    [13]YANG Chengying, WU Hong. RS monitoring soil erosion regime in the Maocun underground river basin, Guilin[J]. CARSOLOGICA SINICA, 2009, 28(2): 206-211. doi: 10.3969/j.issn.1001-4810.2009.02.017
    [14]HAN Xing-rui. KARST WATER BURSTING IN TUNNEL AND EXPERT JUDGING SYSTEM[J]. CARSOLOGICA SINICA, 2004, 23(3): 213-218. doi: 10.3969/j.issn.1001-4810.2004.03.006
    [15]MENG Yan, LEI Ming-tang. THE ADVANCE AND SUGGESTION FOR THE STUDY ON DISCHARGE RATE IN KARST TUNNEL GUSHING[J]. CARSOLOGICA SINICA, 2003, 22(4): 287. doi: 10.3969/j.issn.1001-4810.2003.04.007
    [16]Pei Jianguo, Xie Yunqiu, Zang Cheng, Weng Jintao. TRACING TEST IN CORROSIONAL HILL AREA- A case study of Xinhua county,Hunan province[J]. CARSOLOGICA SINICA, 2000, 19(4): 366-371. doi: 10.3969/j.issn.1001-4810.2000.04.012
    [17]Zhu Xueyu, Xu Shaohui, Si Jinfeng. APPLICATION OF TRACING TEST TO THE REMEDIATION OF CONTAM IN ATEDFRACTURE-KARST WATER IN ZIBO CITY[J]. CARSOLOGICA SINICA, 1997, 16(2): 131-137.
    [18]Ding Jianping. CHARACTERISTICS OF WATER BURSTING AND THE PREDICTION OF DISCHARGE RATE IN THE SHAFT NO.1,WEIJIAZHAI, LINGDAI MINE[J]. CARSOLOGICA SINICA, 1991, 10(4): 313-318.
    [19]Zhang Jianghua, Chen Guoliang. SOME NEW IDEAD ON THE PREDICTION OF TUNNEL INFLOW IN KARST AREA BR WATER BALANCE METHOD[J]. CARSOLOGICA SINICA, 1988, 7(3): 273-278.
    [20]Cai Guobin. EFFECTIVE NEW TRACER MOL YBDENUM IN HYDROGEOLOGICAL EXPLORATION AT XIANGHUAOING TIN MINE[J]. CARSOLOGICA SINICA, 1986, 5(3): 203-212.
  • Cited by

    Periodical cited type(18)

    1. 于唯,蔡可庆,吴学银. 综合示踪法在地连墙渗漏探测中的应用. 建筑机械化. 2024(03): 79-82 .
    2. 姚莎莎,张毅,王新文,李先恒,许江坤,郭发贵,蒙彦. 运用示踪试验分析隧道和岩溶泉的水力联系及介质特征——以关山隧道为例. 中国岩溶. 2024(01): 25-32 . 本站查看
    3. 於开炳,安祥龙,汤罗圣,蒋欣静,李仲夏,杨赟. 外源补给型岩溶管道系统特征及隧道涌水条件研究——以利咸高速楼门隧道为例. 安全与环境工程. 2023(03): 100-108+117 .
    4. 段天宇,成建梅,段勇,李仲夏,陈亮,黄盛财,谷芝. 隧洞突涌水指示西南岩溶大泉成因关系及水环境效应分析. 地质科技通报. 2023(04): 183-193 .
    5. 陈超. 七步法超前地质预报在高铁岩溶隧道中的应用. 铁道勘察. 2023(04): 122-129 .
    6. 方宁. 张吉怀铁路大尧隧道下穿高速公路施工安全管理. 科技创新与应用. 2023(27): 134-137 .
    7. 黄盛财,成建梅,巴净慧,李仲夏,徐文杰,王研. 基于滇中典型紧窄单斜岩溶水系统特征的隧洞涌水条件分析. 中国岩溶. 2023(03): 528-537 . 本站查看
    8. 郭书兰,阎长虹,俞良晨,闫超,李慧,徐源. 无锡浅埋岩溶发育特征及其与隧道安全距离研究. 南京大学学报(自然科学). 2023(05): 890-899 .
    9. 谭家华. MODFLOW-CFP软件在岩溶水系统数值模拟应用中的若干关键问题. 中国岩溶. 2023(04): 636-647 . 本站查看
    10. 罗一鸣,成建梅,徐文杰,巴净慧,黄盛财,段天宇. 西南岩溶区深埋隧洞涌水条件分析及涌水量预测——以滇中引水工程大坡子隧洞为例. 中国岩溶. 2023(06): 1224-1236 . 本站查看
    11. 颜慧明,常威,郭绪磊,邓争荣,黄琨. 岩溶水流系统识别方法及其在引调水工程隧洞选线中的应用. 地质科技通报. 2022(01): 127-136 .
    12. 张鹏,潘晓东,任坤,骆伟,马德青,彭聪,杨杨. 岩溶台地深埋特长隧道岩溶水流特征及涌水评估. 公路. 2022(02): 337-345 .
    13. 颜慧明,常威,季怀松,邓争荣,郭绪磊,陈林,黄琨. 黄陵背斜东北翼岩溶水系统特征及其对引调水隧洞工程的影响. 地质科技通报. 2022(05): 315-323 .
    14. 易沅壁,王万发,王宝利,汪福顺,李思亮. 中国西南喀斯特地区水库溶解态与颗粒态碳研究进展. 地质科技通报. 2022(05): 341-346 .
    15. 马超,曾斌,罗明明,权锋,於李军,李期佳,代昂. 武汉两湖隧道岩溶水系统结构及水循环规律. 地质科技通报. 2022(05): 395-404 .
    16. 宁航,王宗星,柳富田,蒋万军,常威,张竞,万军伟. 基于系统空间特征识别的岩溶地下水污染成因分析. 地质科技通报. 2022(05): 367-376 .
    17. 罗明明,周宏,郭绪磊,陈乾龙,齐凌轩,况野. 峡口隧道间歇性岩溶涌突水过程及来源解析. 地质科技通报. 2021(06): 246-254 .
    18. 薛媛,徐光黎,魏文豪. 基于示踪技术的隧道岩溶灾害危险性分析. 勘察科学技术. 2021(06): 45-50 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.8 %FULLTEXT: 27.8 %META: 70.2 %META: 70.2 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.7 %其他: 10.7 %其他: 0.0 %其他: 0.0 %China: 1.8 %China: 1.8 %上海: 14.9 %上海: 14.9 %中卫: 0.6 %中卫: 0.6 %临汾: 0.0 %临汾: 0.0 %丽水: 0.0 %丽水: 0.0 %兰州: 0.0 %兰州: 0.0 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 2.2 %北京: 2.2 %十堰: 0.0 %十堰: 0.0 %南宁: 0.1 %南宁: 0.1 %台州: 0.0 %台州: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哥伦布: 0.1 %哥伦布: 0.1 %大同: 0.0 %大同: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.2 %天津: 0.2 %宁波: 0.0 %宁波: 0.0 %安顺: 0.0 %安顺: 0.0 %宜宾: 0.0 %宜宾: 0.0 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.0 %宣城: 0.0 %崇左: 0.9 %崇左: 0.9 %平凉: 0.0 %平凉: 0.0 %平顶山: 0.0 %平顶山: 0.0 %张家口: 0.0 %张家口: 0.0 %惠州: 0.0 %惠州: 0.0 %成都: 0.0 %成都: 0.0 %扬州: 0.1 %扬州: 0.1 %无锡: 0.0 %无锡: 0.0 %昆明: 0.2 %昆明: 0.2 %杭州: 0.0 %杭州: 0.0 %武汉: 0.1 %武汉: 0.1 %泉州: 0.0 %泉州: 0.0 %海口: 0.0 %海口: 0.0 %淮南: 0.0 %淮南: 0.0 %漯河: 0.1 %漯河: 0.1 %珠海: 0.3 %珠海: 0.3 %白城: 0.0 %白城: 0.0 %石嘴山: 0.0 %石嘴山: 0.0 %石家庄: 0.0 %石家庄: 0.0 %纽约: 0.9 %纽约: 0.9 %芒廷维尤: 0.3 %芒廷维尤: 0.3 %芝加哥: 0.0 %芝加哥: 0.0 %莫斯科: 0.0 %莫斯科: 0.0 %衢州: 0.0 %衢州: 0.0 %襄阳: 0.0 %襄阳: 0.0 %西宁: 2.5 %西宁: 2.5 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.1 %赣州: 0.1 %邵阳: 0.0 %邵阳: 0.0 %重庆: 0.1 %重庆: 0.1 %银川: 0.0 %银川: 0.0 %长沙: 0.1 %长沙: 0.1 %驻马店: 62.2 %驻马店: 62.2 %黄石: 0.0 %黄石: 0.0 %其他其他China上海中卫临汾丽水兰州加利福尼亚州北京十堰南宁台州呼和浩特哥伦布大同大连天津宁波安顺宜宾宜昌宣城崇左平凉平顶山张家口惠州成都扬州无锡昆明杭州武汉泉州海口淮南漯河珠海白城石嘴山石家庄纽约芒廷维尤芝加哥莫斯科衢州襄阳西宁诺沃克贵阳赣州邵阳重庆银川长沙驻马店黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2155) PDF downloads(444) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return