• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 39 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
ZHANG Binghui, ZHANG Yan, WANG Wei, LIANG Jiahao. A prediction method of karst cave scale based on the binary classification model of the Gaussian process[J]. CARSOLOGICA SINICA, 2020, 39(2): 259-263. doi: 10.11932/karst2020y04
Citation: ZHANG Binghui, ZHANG Yan, WANG Wei, LIANG Jiahao. A prediction method of karst cave scale based on the binary classification model of the Gaussian process[J]. CARSOLOGICA SINICA, 2020, 39(2): 259-263. doi: 10.11932/karst2020y04

A prediction method of karst cave scale based on the binary classification model of the Gaussian process

doi: 10.11932/karst2020y04
  • Publish Date: 2020-04-25
  • A complex non-linear relationship exists between the scale of karst caves and its influencing factors. While the scale of karst caves can be predicted by pattern recognition based on influencing factors. A method based on the Gaussian process for the binary classification model (GPC) is proposed to predict the scale of karst caves. In this method, the complex nonlinear relationship between the scale of karst caves and influencing factors is established by learning a few samples. It gives probabilistic output identification for forecasting samples that only provide influencing factors. Research suggests that the proposed method not only has merits of small training samples, self-adaptive parameters determination and high recognition accuracy, but also can give the probabilistic credibility for prediction results. This method can provide a quantitative basis for effective prediction of the scale of karst caves in engineering practice, and has a good application prospect.

     

  • loading
  • [1]
    王增银,万军伟,姚长宏.清江流域溶洞发育特征[J].中国岩溶,1999(2):51-58.
    [2]
    何翊武,傅鹤林,罗立峰,等.隧底岩溶洞对结构稳定性的理论解 [J].土木工程学报,2014,47(10):128-135.
    [3]
    徐善初,陈建平,左昌群,等.模糊综合评判法在隧道施工岩溶预报中的应用[J].现代隧道技术,2011,48(5):76-81.
    [4]
    李建朋,聂庆科,刘泉声,等.唐山市岩溶地面塌陷稳定性评价的Logistic回归模型[J].岩土力学,2017,38(S2):250-256.
    [5]
    王瑞杰.三维地震波形差异属性分析在预测岩溶裂隙发育带中应用[J].中国煤炭地质,2018,30(1):72-75,80.
    [6]
    袁永才,李术才,李利平,等.岩溶隧道施工过程中大型溶洞的综合预报及治理方案研究[J].现代隧道技术,2015,52(2):192-197.
    [7]
    刘振华,范宏运,朱宇泽,等.基于BP神经网络的溶洞规模预测及应用[J].中国岩溶,2018,37(1):139-145.
    [8]
    Matthias S. Gaussian processes for machine learning [J]. International Journal of Neural System, 2004, 14(2): 69-106.
    [9]
    Mark G, Rogers S. Variational bayesian multinomial probit regression with Gaussian process priors [J]. Neural Computation, 2006, 18(8): 1790-1817.
    [10]
    Sofiane B, Bermak A. Gaussian process for nonstationary times Series Prediction[J]. Computational Statistics & Data Analysis, 2004, 47(4): 705-712.
    [11]
    张研, 苏国韶, 燕柳斌.基于高斯过程机器学习方法的隧道围岩分类模型[J].现代隧道技术,2011, 48(6): 32-37.
    [12]
    燕柳斌,张研,苏国韶.岩溶塌陷预测的高斯过程机器学习模型[J].广西大学学报(自然科学版),2011, 36(1): 172-176.
    [13]
    贺建军,张俊星,贾思齐,等. 一种新高斯过程分类算法[J].控制与决策,2014,29(9):1587-1592
    [14]
    Perrin G, Soize C, Marque-pucheu S, et al. Nested polynomial trends for the improvement of Gaussian process-based predictors[J]. Journal of Computational Physics, 2017, 346(1): 389-402.
    [15]
    Richardson R R, Osborne M A, Howey D A. Gaussian process regression for forecasting battery state of health[J]. Journal of Power Sources, 2017, 357(31):209-219.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1531) PDF downloads(163) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return