Citation: | ZHANG Binghui, ZHANG Yan, WANG Wei, LIANG Jiahao. A prediction method of karst cave scale based on the binary classification model of the Gaussian process[J]. CARSOLOGICA SINICA, 2020, 39(2): 259-263. doi: 10.11932/karst2020y04 |
[1] |
王增银,万军伟,姚长宏.清江流域溶洞发育特征[J].中国岩溶,1999(2):51-58.
|
[2] |
何翊武,傅鹤林,罗立峰,等.隧底岩溶洞对结构稳定性的理论解 [J].土木工程学报,2014,47(10):128-135.
|
[3] |
徐善初,陈建平,左昌群,等.模糊综合评判法在隧道施工岩溶预报中的应用[J].现代隧道技术,2011,48(5):76-81.
|
[4] |
李建朋,聂庆科,刘泉声,等.唐山市岩溶地面塌陷稳定性评价的Logistic回归模型[J].岩土力学,2017,38(S2):250-256.
|
[5] |
王瑞杰.三维地震波形差异属性分析在预测岩溶裂隙发育带中应用[J].中国煤炭地质,2018,30(1):72-75,80.
|
[6] |
袁永才,李术才,李利平,等.岩溶隧道施工过程中大型溶洞的综合预报及治理方案研究[J].现代隧道技术,2015,52(2):192-197.
|
[7] |
刘振华,范宏运,朱宇泽,等.基于BP神经网络的溶洞规模预测及应用[J].中国岩溶,2018,37(1):139-145.
|
[8] |
Matthias S. Gaussian processes for machine learning [J]. International Journal of Neural System, 2004, 14(2): 69-106.
|
[9] |
Mark G, Rogers S. Variational bayesian multinomial probit regression with Gaussian process priors [J]. Neural Computation, 2006, 18(8): 1790-1817.
|
[10] |
Sofiane B, Bermak A. Gaussian process for nonstationary times Series Prediction[J]. Computational Statistics & Data Analysis, 2004, 47(4): 705-712.
|
[11] |
张研, 苏国韶, 燕柳斌.基于高斯过程机器学习方法的隧道围岩分类模型[J].现代隧道技术,2011, 48(6): 32-37.
|
[12] |
燕柳斌,张研,苏国韶.岩溶塌陷预测的高斯过程机器学习模型[J].广西大学学报(自然科学版),2011, 36(1): 172-176.
|
[13] |
贺建军,张俊星,贾思齐,等. 一种新高斯过程分类算法[J].控制与决策,2014,29(9):1587-1592
|
[14] |
Perrin G, Soize C, Marque-pucheu S, et al. Nested polynomial trends for the improvement of Gaussian process-based predictors[J]. Journal of Computational Physics, 2017, 346(1): 389-402.
|
[15] |
Richardson R R, Osborne M A, Howey D A. Gaussian process regression for forecasting battery state of health[J]. Journal of Power Sources, 2017, 357(31):209-219.
|