Citation: | FAN Baoxiang, ZHOU Zhongfa, ZHU Cancan, WANG Yanlin, XUE Bingqing, TANG Yuntao, TIAN Zhonghui. Self-purification ability of tourist caves on a short-term scale: An example of the Dafeng cave in Suiyang county[J]. CARSOLOGICA SINICA, 2020, 39(2): 275-285. doi: 10.11932/karst2020y03 |
[1] |
宋林华, 韦小宁, 梁福原.河北临城白云洞洞穴旅游对洞穴CO2浓度及温度的影响[J]. 中国岩溶, 2003, 22(3):230-235.
|
[2] |
朱德浩. 岩溶洞穴成因研究和实验研究综述 [J].中国岩溶, 1993 , 12 (3):285-291.
|
[3] |
张美良, 朱晓燕, 吴夏. 旅游活动对巴马水晶宫洞穴环境及碳酸钙沉积物景观的影响[J]. 中国岩溶,2017,36(1):119-130.
|
[4] |
王晓青, 周长春, 孙小银,等. 山东沂源九天洞洞穴环境变化监测分析[J]. 中国岩溶, 2008, 27(1):91-96.
|
[5] |
Atkins L. Indoor concentrations of ammonia and the potential contribution of humans to atmospheric budgets [J].Atmospheric Environment, 1993, 27 (A ): 1-7.
|
[6] |
Bunting B. The physical impacts of recreational users in caves: methods currently in use for assessing recreational impacts in two New Zealand caves. Cave and Karst Management in Australasia 12.Proceedings of the 12th Australasian Conference on Cave and Karst Management[C]. Carlton South, Victoria: Waitomo Caves, New Zealand, Australasian Cave and Karst Management Association, 1998, 29(58): 47-54.
|
[7] |
Aley T. Tourist caves: algae and lampenflora[M]//Gunn J. Encyclopaedia of Cave and Karst Science. New York: Fitzroy Dearborn, 2004: 733-734.
|
[8] |
Gillieson D. Caves: Processes, Development, Management[M]. Oxford: Blackwell, 1996.
|
[9] |
Halbert E J M. Evaluation of carbon dioxide and oxygen data in atmosphere using the Gibbs Triangle and Cave Air Index [J].Helictite,1982, 20 (2):60-68.
|
[10] |
袁道先, 蔡桂鸿. 岩溶环境学[M]. 重庆: 重庆出版社, 1988: 33.
|
[11] |
周长春, 王晓青, 孙小银, 等. 旅游洞穴环境变化监测分析及其影响因素研究: 以山东沂源九天洞例[J]. 旅游学刊, 2009, 24(2): 81-86.
|
[12] |
Fernández-Cortés A, Calaforra J M, Jiménez-Espinosa R, et al. Geostatistical spatiotemporal analysis of air temperature as an aid to delineating thermal stability zones in a potential show cave: Implications for environmental management[J]. Journal of Environmental Management, 2006, 81(4): 371-383.
|
[13] |
韦跃龙,陈伟海,罗劬侃.洞穴次生化学沉积物与地质背景及洞穴环境的耦合关系:以广西巴马水晶宫为例[J].地理学报,2016,71(9):1528-1543.
|
[14] |
Russell M J, MacLean V L. Management issues in a Tasmanian tourist cave: Potential microclimatic impacts of cave modifications[J]. Journal of Environmental Management, 2008, 87(3): 474-483.
|
[15] |
Novas N, Gázquez J A, Maclennan J, et al. A real-time underground environment monitoring system sustain tourism of caves[J]. Journal of Cleaner Production, 2016, 142(4):2707-2721.
|
[16] |
张萍, 杨琰, 孙喆, 等. 河南鸡冠洞CO2季节和昼夜变化特征及影响因子比较[J]. 环境科学, 2017, 38(1): 60-69.
|
[17] |
郑志惠,王庆,周厚云,等. 山东半岛九天洞洞穴环境变化特征与影响因素[J].中国岩溶,2019,38(3):370-377.
|
[18] |
朱蓉,张存杰,梅梅.大气自净能力指数的气候特征与应用研究[J].中国环境科学,2018,38(10):3601-3610.
|
[19] |
徐尚全, 殷建军, 杨平恒, 等. 旅游活动对洞穴环境的影响及洞穴的自净能力研究: 以重庆雪玉洞为例[J]. 热带地理, 2012, 32(3): 286-292.
|
[20] |
张结, 周忠发, 汪炎林, 等. 短时间高强度旅游活动下洞穴CO2的变化特征及对滴水水文地球化学的响应[J]. 地理学报, 2018, 73(9): 1687-1701.
|
[21] |
李坡, 贺卫, 钱治, 等. 双河洞地质公园研究[M]. 贵阳: 贵州人民出版社, 2008: 58-101.
|
[22] |
Sánchez-Ca?ete E P, Serrano-Ortiz P, Domingo F, et al. Cave ventilation is influenced by variations in the CO2 -dependent virtual temperature[J]. International Journal of Speleology, 2013, 42(1): 1-8.
|
[23] |
Pu J B,Wang A Y, Yin J J, et al. PCO2 variations of cave air and cave water in a subtropical cave, SW China[J]. Carbonates & Evaporites, 2018,33(3): 477-487.
|
[24] |
潘艳喜, 周忠发, 李坡, 等. 旅游洞穴空气环境时空变化特征及其影响因素: 以贵州省绥阳大风洞为例[J]. 中国岩溶, 2016, 35(4): 425-431.
|
[25] |
薛冰清,张结,汪炎林,等.贵州双河洞空气环境主要因子化特征及影响因素分析[J].环境科学与技术,2019,42(2):81-88.
|
[26] |
A Bogli . Karst hydrology and physical speleology[M].Berlin: Springer, 1978: 32-43.
|
[27] |
罗时琴, 易武英, 李坡. 织金洞洞穴环境监测及其影响因素分析[J]. 贵州科学, 2014, 32(6): 92-96.
|
[28] |
何璐瑶, 胡超涌, 曹振华,等. 湖北清江和尚洞洞穴温度对气候变化的响应[J]. 中国岩溶, 2008, 27(3):273-277.
|
[29] |
Breitenbach S F M, Lechleitner F A, Meyer H, et al. Cave ventilation and rainfall signals in dripwater in a monsoonal setting: Amonitoring study from NE India[J]. Chemical Geology, 2015, 402(33): 111-124.
|
[30] |
Ridley H E, Prufer K M, Walczak I W, et al. High-resolution monitoring of Yok Balum Cave, Belize: An investigation of seasonal ventilation regimes and the atmospheric and drip-flow response to a local earthquake[J]. Journal of Cave and Karst Studies, 2015, 77(3): 183-199.
|
[31] |
Cowan B D, Osborne M C, Banner J L, et al. Temporal variability of cave-air CO2 in central Texas[J]. Journal of Cave and Karst Studies, 2013, 75(1): 38-50.
|
[32] |
Mattey D P, Atkinson T C, Barker J A, et al. Carbon dioxide, ground air and carbon cycling in Gibraltar karst[J]. Geochimica et Cosmochimica Acta, 2016, 184(28): 88-113.
|
[33] |
Baldini J U L, Baldini L M, Mc Dermott F, et al. Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: Evidence from Bally namintra Cave, Ireland[J]. Journal of Cave and Karst Studies, 2006, 68(1): 4-11.
|
[34] |
Vieten R, Winter A, Warken S F, et al. Seasonal temperature variations controlling cave ventilation processes in Cueva Larga, Puerto Rico[J]. International Journal of Speleology, 2016, 45(3): 259-273.
|
[35] |
Pracny P, Faimon J, Kabelka L, et al. Variations of carbon dioxide in the air and dripwaters of Punkva Caves (Moravian Karst, Czech Republic) [J]. Carbonates Evaporites, 2016, 31(4): 375-386.
|
[36] |
张英骏.贵州旅游洞穴环境保护刍议[M]//贵州省环境科学协会.贵州喀斯特环境研究.贵阳:贵州人民出版社, 1988:9-14.
|
[37] |
Lang M, Faimon J, Pracny P, et al. A show cave management: Anthropogenic CO2 in atmosphere of Vypustek Cave (Moravian Karst, Czech Republic[J].Journal for Nature Conservation,2017,35 :40-52.
|
[38] |
Bartlett, Albert A . Death in a hot tub: The physics of heat stroke[J]. American Journal of Physics, 1983, 51(2):127.
|
[39] |
Nagy Z, Jung A. A case study of the anthropogenic impact on the catchment of Mogyoród-brook, Hungary[J]. Physics & Chemistry of the Earth, 2005, 30(8-10):588-597.
|
[40] |
舒弢.极端天气下的地铁应急处置方案研究[J].郑州铁路职业技术学院学报,2019,31(1):5-6.
|