• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 39 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
SHENG Yezi, ZENG Mengxiu, LIN Degen, PENG Haijun, ZHU Lidong, LI Fengquan, YU Yihong, WANG Nengjing. Impacts of human activities on net primary productivity of vegetation in Guizhou Province from 2000 to 2014[J]. CARSOLOGICA SINICA, 2020, 39(1): 62-70. doi: 10.11932/karst2020y01
Citation: SHENG Yezi, ZENG Mengxiu, LIN Degen, PENG Haijun, ZHU Lidong, LI Fengquan, YU Yihong, WANG Nengjing. Impacts of human activities on net primary productivity of vegetation in Guizhou Province from 2000 to 2014[J]. CARSOLOGICA SINICA, 2020, 39(1): 62-70. doi: 10.11932/karst2020y01

Impacts of human activities on net primary productivity of vegetation in Guizhou Province from 2000 to 2014

doi: 10.11932/karst2020y01
  • Publish Date: 2020-02-25
  • Karst rocky desertification, the most significant ecological problem in Guizhou Province, southwestern China, is primarily driven by human activities in recent years. As a main signature of this phenomenon, vegetation degradation can be reflected by Net Primary Productivity (NPP), which is a key indicator of production capacity of the terrestrial ecosystem. However, so far less quantitative analyses have been made on the impact of human activities on vegetative NPP in Guizhou Province, which is of great significance for coordinating the relationship between human activity and karst rocky desertification control, as well as improving the quality of karst eco-environment. In this study, we established the Relative Contribution Index (RCI) by using actual NPP (ANPP) based on MODIS MOD17A3 data and potential NPP (PNPP) based on the Carnegie Ames Stanford Approach (CASA) model. Then, in combination of the classification of karst landform proportion, we analyzed the spatial-temporal variations of human activities and their influence on NPP in Guizhou Province from 2000 to 2014. Finally we discussed the contributions rates of different factors for human activity on RCI values using Correlation Analysis (CA). The results indicate that human activities in Guizhou Province promoted the increase of NPP, and the degree of the influence first increased and then decreased from 2000 to 2014. In the southeastern and northern edges of Guizhou Province where the proportion of karst landform area is less than 51.8%, the RCI value fluctuated violently and was greatly affected by human activities. However, in the areas where the proportion of karst landform is higher than 51.8%, the impact of human activities was relatively weaker and the variation was gentler. Additionally, human activities in the northeast, central and western parts of Guizhou Province generally had negative effects on the ecological environment from 2000 to 2014, while the effects in the southeastern and northern marginal areas were positive. In the past 15 years, the positive impact of human activities on the ecological environment in most areas of central and northern Guizhou Province has increased, while the degree of human intervention in the southwestern marginal area has decreased and the negative interference of human activities in some areas in the southeastern part has increased. Moreover, the CA results show that the total plant coverage area of crops, total agricultural output value, proportion of urban population, gross domestic product per head, disposable income of urban residents and highway mileage had significant positive correlation with RCI values of Guizhou Province during the period from 2000 to 2014, while the population density had a significant negative correlation with RCI values. Among them, agricultural activities played an important role in the negative impact of human activities. On one hand, urbanization and economic development promoted the growth of livable demand and strengthened the positive impact of human activities on the ecological environment; on the other hand, they also expanded the demand for resource development, transportation and public infrastructure. Thus, the destructive interference of human activities on the ecological environment was unavoidable. In addition, compared with other areas, the areas with moderate karst landforms were more likely to be negatively affected by agricultural production, urban development and highway construction.

     

  • loading
  • [1]
    Lindeman R L. Experimental Simulation of Winter Anaerobiosis in a Senescent Lake[J]. Ecology, 1942, 23(1): 1-13.
    [2]
    Walker, James C G. Biogeochemistry: An Analysis of Global Change[J]. Science, 1991, 253(5020): 686-688.
    [3]
    Field C B, Randerson J T, Malmstr?m C M. Global net primary production: Combining ecology and remote sensing[J]. Remote Sensing of Environment, 1995, 51(1): 74-88.
    [4]
    Malmstr?m C M,Thompson M V,Juday G P, et al.Interannual variation in global-scale net primary production:Testing model estimates[J].Global Biogeochemical Cycles, 1997, 11(3): 367-392.
    [5]
    Tynan C T. Ecological importance of the Southern boundary of the Antarctic Circumpolar Current[J]. Nature, 1998, 392(6677): 708-710.
    [6]
    Matsushita B, Tamura M. Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia[J]. Remote Sensing of Environment, 2002, 81(1): 58-66.
    [7]
    Silvestri S, Marani M, Settle J, et al. Salt marsh vegetation radiometry: Data analysis and scaling[J]. Remote Sensing of Environment, 2002, 80(3): 473-482.
    [8]
    崔林丽, 杜华强, 史军, 等. 中国东南部植被NPP的时空格局变化及其与气候的关系研究[J]. 地理科学, 2016, 36(5): 787-793.
    [9]
    卫亚星, 王莉雯, 石迎春, 等.青海省草地资源净初级生产力遥感监测[J]. 地理科学, 2012, 32(5): 621-627.
    [10]
    贵州省林业厅. 贵州省石漠化状况公报[N]. 贵州日报, 2012-06-27.
    [11]
    王世杰, 李阳兵, 李瑞玲. 喀斯特石漠化的形成背景、演化与治理[J]. 第四纪研究, 2003, 23(6): 657-666.
    [12]
    李阳兵, 王世杰, 容丽. 西南岩溶山地石漠化及生态恢复研究展望[J]. 生态学杂志, 2004,23(6): 84-88.
    [13]
    Xu E Q, Zhang H Q. Characterization and interaction of driving factors in karst rocky desertification: a case study from Changshun, China[J]. Solid Earth, 2014, 5(2): 1329-1340.
    [14]
    Yang Q Q, Wang K L, Zhang C, et al. Spatio-temporal evolution of rocky desertification and its driving forces in karst areas of Northwestern Guangxi, China[J]. Environmental Earth Sciences, 2011, 64(2): 383-393.
    [15]
    王晓帆, 许尔琪, 张红旗, 等. 贵州土地石漠化变化及社会经济活动的影响分析[J]. 中国生态农业学报, 2018, 26(12): 1908-1918.
    [16]
    许尔琪. 基于地理加权回归的石漠化影响因子分布研究[J]. 资源科学, 2017, 39(10): 1975-1988.
    [17]
    陈起伟. 贵州喀斯特石漠化的人为因素分析[J]. 贵州教育学院学报(自然科学), 2006 (2): 82-85.
    [18]
    王家嘉, 林昌虎, 何腾兵. 人类活动对贵州喀斯特石漠化地区的影响[J]. 水土保持研究, 2006 (5): 276-279.
    [19]
    来楷迪. 贵州两江(长江与珠江)分水岭地带岩溶石漠化特征及其环境影响因子的初步研究[D]. 贵阳:贵州大学, 2008.
    [20]
    马建勇, 谷晓平, 黄玫, 等. 近50年贵州净生态系统生产力时空分布特征[J]. 生态环境学报, 2013, 22(9): 1462-1470.
    [21]
    王冰, 杨胜天, 王玉娟.贵州省喀斯特地区植被净第一性生产力的估算[J].中国岩溶, 2007,26 (2): 98-104.
    [22]
    杨亚梅. 贵州省植被净初级生产力时空变化与气象因子相关性分析[D]. 重庆:西南大学, 2009.
    [23]
    史迎春, 舒英格. 喀斯特石漠化时空变化特征及驱动因子分析:以贵州晴隆县为例[J]. 林业资源管理, 2017 (1): 135-143,152.
    [24]
    罗玲, 王宗明, 毛德华, 等. 松嫩平原西部草地净初级生产力对气候变化及人类活动的响应[J]. 生态学杂志, 2012, 31(6): 1533-1540.
    [25]
    毛德华. 定量评价人类活动对东北地区沼泽湿地植被NPP的影响[D]. 长春:中国科学院东北地理与农业生态研究所, 2014.
    [26]
    程春晓, 徐宗学, 张淑荣, 等. 黑河流域NPP对气候变化及人类活动的响应[J]. 北京师范大学学报(自然科学版), 2016, 52(5): 571-579.
    [27]
    刘春雨, 董晓峰, 刘英英, 等. 空间视角下人类活动强度对甘肃省净初级生产力的影响[J]. 兰州大学学报(自然科学版), 2016, 52(1): 62-68.
    [28]
    杜金燊, 于德永. 气候变化和人类活动对中国北方农牧交错区草地净初级生产力的影响[J]. 北京师范大学学报(自然科学版), 2018, 54(3): 365-372.
    [29]
    潘桂行, 申涛, 马雄德, 等. 人类活动和自然因素对海流兔河流域生态环境影响分析[J]. 干旱区资源与环境, 2017, 31(4): 67-72.
    [30]
    贵州省科学技术厅. 喀斯特科学数据中心[EB/OL]. 贵州省科学技术厅, 2007-05-31 [2019-03-25]. http://www.karstdata.cn/.
    [31]
    贵州省统计局.近年来贵州经济结构变化情况分析[EB/OL]. 贵州省统计局, 2017-03-28[2019-04-17].http://www.gz.stats.gov.cn/tjsj_35719/tjfx_35729/201703/t201703 28_2047459.html.
    [32]
    中华人民共和国国家统计局. 国家数据[EB/OL]. 国家统计局, 2019-02-28[2019-03-26]http://data.stats.gov.cn/.
    [33]
    贵州省公务员局.贵州省2014年人力资源和社会保障事业统计公报[EB/OL]. 2014-08-29[2019-04-28]. http://www.gzrs.gov.cn/xxgk/xxgkml/tjxx/201803/t20180309_319 3170.html.
    [34]
    贵州省公务员局.贵州省2013年人力资源和社会保障事业统计公报[EB/OL]. 2015-06-16[2019-04-28]. http://www.gzrs.gov.cn/xxgk/xxgkml/tjxx/201803/t20180309_319 3167.html.
    [35]
    刘燕. 贵州省土地资源可持续利用研究[D]. 重庆:西南农业大学, 2002.
    [36]
    朱文泉. 中国陆地生态系统植被净初级生产力遥感估算及其与气候变化关系的研究[D]. 北京:北京师范大学, 2005.
    [37]
    朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3): 413-424.
    [38]
    蔡雨恋, 郑有飞, 王云龙, 等. 利用改进的CASA模型分析三江源区净植被生产力[J]. 南京信息工程大学学报(自然科学版), 2013, 5(1): 34-42.
    [39]
    李刚, 辛晓平, 王道龙, 等. 改进CASA模型在内蒙古草地生产力估算中的应用[J]. 生态学杂志, 2007, 26(12): 2100-2106.
    [40]
    Haberl H, Plutzar C, Erb K H, et al. Human appropriation of net primary production as determinant of avifauna diversity in Austria[J]. Agriculture,Ecosystems and Environment, 2005, 110(3): 119-131.
    [41]
    张珺, 任鸿瑞. 人类活动对锡林郭勒盟草原净初级生产力的影响研究[J]. 自然资源学报, 2017, 32(7): 1125-1133.
    [42]
    Jiang Y, Li L, Groves C, et al. Relationships between rocky desertification and spatial pattern of land use in typical karst area,Southwest China[J]. Environmental Earth Sciences, 2009, 59(4): 881.
    [43]
    Qi X,Wang K,Zhang C.Effectiveness of ecological restoration projects in a karst region of southwest China assessed using vegetation succession mapping[J].Ecological Engineering,2013,54:245-253.
    [44]
    Zhang M, Wang K, Liu H, et al. How ecological restoration alters ecosystem services: an analysis of vegetation carbon sequestration in the karst area of northwest Guangxi,China[J]. Environmental Earth Sciences, 2015, 74(6): 5307-5317.
    [45]
    张笑鹤. 西南地区NDVI和NPP时空动态及其与气候因子相关性分析[D]. 北京:中国林业科学研究院, 2011.
    [46]
    牟艳娟. 浅谈贵州省“岩溶地区石漠化综合治理试点工程”监测[J]. 亚热带水土保持, 2010, 22(4): 56-57.
    [47]
    兰安军. 基于GIS-RS的贵州喀斯特石漠化空间格局与演化机制研究[D]. 贵阳:贵州师范大学,2003.
    [48]
    林昌虎. 贵州山区坡耕地的利用与保护[J]. 水土保持通报, 1992 (4): 43-47.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1657) PDF downloads(345) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return