• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 39 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
CHEN Ying, WEI Xingping, LEI Shan. Analysis on soil erodibility of different land use types in the Qingmuguan karst valley[J]. CARSOLOGICA SINICA, 2020, 39(6): 836-844. doi: 10.11932/karst20200604
Citation: CHEN Ying, WEI Xingping, LEI Shan. Analysis on soil erodibility of different land use types in the Qingmuguan karst valley[J]. CARSOLOGICA SINICA, 2020, 39(6): 836-844. doi: 10.11932/karst20200604

Analysis on soil erodibility of different land use types in the Qingmuguan karst valley

doi: 10.11932/karst20200604
  • Publish Date: 2020-12-25
  • The purpose of this work is to investigate the physicochemical properties, erodibility and influencing factors of soil in the karst areas of Chongqing City, so as to provide references for quantitative study of soil erosion and the formulation of soil and water conservation measures, and promote regional ecological protection and land use structure adjustment. The work area is in the Qingmuguan karst valley watershed of Chongqing City. This valley formed in the southward extension of the Wentangxia anticline in the Jinyun mountains, part of the parallel ridge-valley system in eastern Sichuan. Here a large area of Triassic carbonate rock is exposed. Under the action of long-term water current dissolution, a typical karst valley landscape of "one mountain, two ridges and one trough" developed. The geological strata are composed of carbonate rock(T1j、T2l) and clastic rock(T3xj). In this work, six land use types were selected as the objects, including cultivated land, coniferous and mixed conifer-broadleaf forest, bamboo forest, garden land, wild grassland and bare land. Surface soil (0-10 cm) and profile soil (0-60 cm) were collected to analyze material composition and organic carbon content, and the soil erodibility K was calculated by the EPIC model. Results show that, (1) The erodibility K value of topsoil in the study area is between 0.0371 and 0.0605, 0.0485 on average, with a median value 0.0475 and a variation coefficient 10.71%, and the skewness and the kurtosis are less than 1; (2) The topsoil is dominated by silt, attributed to silty clay loam. The organic matter content is between 13.98 and 52.24 g.kg-1, with an average value of 29.20 g.kg-1.The K value of topsoil erodibility is negatively correlated with sand content and carbon content(P <0.01), positively correlated with silt content(P <0.01),and negatively correlated with clay content(P<0.05)significantly; (3) The topsoil erodibility K values of different land use types in order are: bare land(0.0583)>cultivated land (0.0534)>garden land(0.0483)>wild grassland(0.0478) >bamboo forest(0.0469) >mixed conifer-broadleaf forest(0.0427),with prominent differences (P < 0.05), and the coefficients of variation range from 2.7% to 6.1%. Bare land and cultivated land that are strongly influenced by human activities are the primary sources of sedimentation in the region.Vegetation restoration can effectively improve soil erosion resistance;(4)For different land use types, the average soil erodibility K value in the soil profile of cultivated land (0.0563) is significantly higher than that of wild grassland (0.0516) and forest land (0.0481) (P<0.05). While the difference of soil erodibility K values between wild grassland and forest land is not obvious.In soil profiles,the K shows relatively small values with great variations in depth range 0-35 cm,and increases with depth in 35-60 cm below the surface.

     

  • loading
  • [1]
    SHI C X.Scaling effects on sediment yield in the upper Yangtze River[J].Geographical Research,2008,27(4):800-810.
    [2]
    Panagos P, Borrelli P, Poesen J, et al.The new assessment of soil loss by water erosion in Europe[J].Environmental science & policy, 2015,54:438-447.
    [3]
    梁音,史学正.长江以南东部丘陵山区土壤可蚀性K值研究[J].水土保持研 究,1999,6(2):47-52.
    [4]
    Wischmeier W H,Smith D D.Predicting Rainfall Erosion Losses:A Guide to onservation Planning ,Agricultural Handbook ,No.537[M].Washington DC:US Department of Agriculture,1978:19-27.
    [5]
    梁音,刘宪春,曹龙熹,等.中国水蚀区土壤可蚀性K值计算与宏观分布[J].中国水土保持,2013(10);35-40,79.
    [6]
    Renard K G,Foster G R,Weesies G A,et al.Predicting Soil Erosion by Water:A Guide to Conservation Planning with the Revised Universal Soil Loss Equation(RUSLE)[M].US Department of Agriculture ,Agriculture Handbook No.703,1997:404-406.
    [7]
    胡刚,宋慧,石星军,等.基于RUSLE的卧虎山水库流域土壤侵蚀特征分析[J].地理科学,2018,38(4):610-617.
    [8]
    黄晓强,赵云杰,信忠保,等.北京山区典型土地利用方式对土壤理化性质及可蚀性的影响[J].水土保持研究,2015,22(1):5-10.
    [9]
    荆莎莎,张荣华,张庆红,等.沂蒙山区典型县土壤可蚀性K值空间变异研究[J]. 土壤通报,2017,48(2):278-284.
    [10]
    高丽倩,赵允格,秦宁强,等.黄土丘陵区生物结皮对土壤可蚀性的影响[J].应用生态学报,2013,24(1):105-112.
    [11]
    王文鑫,王文龙,郭明明,等.黄土高塬沟壑区植被恢复对沟头土壤团聚体特征及土壤可蚀性的影响[J].中国农业科学,2019,52(16):2845-2857.
    [12]
    史东梅,陈正发,蒋光毅,等.紫色丘陵区几种土壤可蚀性K值估算方法的比较 [J].北京林业大学学报,2012,34(1):32-38.
    [13]
    徐文秀,韦杰,李进林,等.三峡库区紫色土坡耕地表土的可蚀性研究[J].水土保持通报,2019,39(3):7-11,18.
    [14]
    朱成刚,李卫红,李大龙,等.伊犁河谷土壤理化性质及可蚀性特征分析[J].资源科学,2016,38(7):1212-1221.
    [15]
    梁博,聂晓刚,万丹,等.喜马拉雅山脉南麓典型林地对土壤理化性质及可蚀性K值影响[J].土壤学报,2018,55(6):1377-1388.
    [16]
    高华端,李锐.喀斯特地区原状土的可蚀性[J].中国水土保持科学,2007,5(5):1-4.
    [17]
    唐夫凯.岩溶峡谷区不同土地利用方式土壤抗蚀性研究[D].北京:中国林业科学研究院,2016.
    [18]
    陈佳,陈洪松,冯腾,等.桂西北喀斯特地区不同土地利用类型土壤抗蚀性研究 [J].中国生态农业学报,2012,20(1):105-110.
    [19]
    胡宁,傅瓦利,马志敏,等.岩溶石漠化山地不同退耕模式土壤抗蚀性及其与结构体分形关系研究[J].中国岩溶,2008,27(2):115-121.
    [20]
    王佩将,戴全厚,丁贵杰,等.退化喀斯特植被恢复过程中的土壤抗蚀性变化[J]. 土壤学报,2014,51(4):806-815.
    [21]
    肖盛杨,舒英格,陈梦军.喀斯特高原峡谷区不同植被类型的土壤抗蚀性[J].水土保持通报,2019,39(4):30-35,81.
    [22]
    吴昌广,曾毅,周志翔,等.三峡库区土壤可蚀性K值研究[J].中国水土保持科学,2010,8(3):8-12.
    [23]
    宋春风,陶和平,刘斌涛,等.长江上游地区土壤可蚀性空间分异特征[J].长江流域资源与环境,2012,21(9):1123-1130.
    [24]
    Williams J R,Renard K G,Dyke P T.EPIC:A new method for assessing erosion's effect on soil productivity[J]. Journal of Soil and water Conservation, 1983,38(5):381-383.
    [25]
    Panagopoulos T, De Jesus J, Blumberg D, et al. Spatial variability of durum wheat yield as related to soil parameters in an organic field[J].Communications in soit science and plant analysis,2014,45(15):2018-2031.
    [26]
    杨慧,曹建华,孙蕾,等.岩溶区不同土地利用类型土壤无机磷形态分布特征[J]. 水土保持学报,2010,24(2):135-140.
    [27]
    黄芬,胡刚,涂春燕,等.岩溶区不同土地利用类型土壤钙形态分布特征[J].南方农业学报,2015,46(9):1574-1578.
    [28]
    朱梓弘,杨程,谢银财,等.重度石漠化区不同土地利用方式下土壤养分特征[J]. 中国岩溶,2018,37(6):842-849.
    [29]
    范跃新,杨玉盛,杨智杰,等.中亚热带常绿阔叶林不同演替阶段土壤活性有机碳含量及季节动态[J].生态学报,2013,33(18): 5751-5759.
    [30]
    陈涵兮,海龙,黄利民,等.坡向对毛竹林土壤养分及其生态化学计量特征的影 响[J].应用生态学报,2019,30(9):2915-2922.
    [31]
    杨子生.滇东北山区坡耕地土壤可蚀性因子[J].山地学报,1999,17(S1):11-16.
    [32]
    王敬贵,亢庆,邝高明,等.尖山河小流域土壤可蚀性K值空间变异研究[J].生态环境学报,2014,23(4):555-560.
    [33]
    段亚锋,王克林,冯达,等.典型喀斯特小流域土壤有机碳和全氮空间格局变化及其对退耕还林还草的响应[J].生态学报,2018,38(5):1560-1568.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1615) PDF downloads(249) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return