• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 39 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
CHEN Liquan, ZHAO Chaoying, REN Chaofeng, WANG Peijie, CHEN Xuerong, CHEN Hengyi. Monitoring the Jianshanying landslide in a karst mountainous area of Guizhou by optical remote sensing[J]. CARSOLOGICA SINICA, 2020, 39(4): 518-523. doi: 10.11932/karst20200407
Citation: CHEN Liquan, ZHAO Chaoying, REN Chaofeng, WANG Peijie, CHEN Xuerong, CHEN Hengyi. Monitoring the Jianshanying landslide in a karst mountainous area of Guizhou by optical remote sensing[J]. CARSOLOGICA SINICA, 2020, 39(4): 518-523. doi: 10.11932/karst20200407

Monitoring the Jianshanying landslide in a karst mountainous area of Guizhou by optical remote sensing

doi: 10.11932/karst20200407
  • Publish Date: 2020-08-25
  • Landslides in karst mountainous areas of southwest China induced by underground mining can cause huge economic losses and casualties. Such hazard is characterized by large deformation gradients and serious collapse of the surface. This work takes the Jianshanying mining-induced landslide as an example to realizes the quantitative 2D time-series deformation monitoring of the landslide by optical sub-pixel correlation methods based on multiple optical images. First, multiple historical archives of Google earth images and UAV images are used to detect the damage of the surface, showing that the 1# landslide area has undergone significant surface deformation in 2013, becoming increasingly serious over time. Then, the 2D deformation time series of the 1# landslide area from July 31, 2016 to March 22, 2020 is inverted based on the Sentinel-2 data. Results indicate that the horizontal deformation in this area tended to be larger in the slope direction as well as in the east-west and north-south directions over time. The deformation continued to increase over time, and the maximum cumulative deformation reached 44 m and -58 m, respectively. Therefore, the large-gradient deformation monitoring of the landslide disaster in Guizhou karst mountainous areas can be realized by using optical remote sensing technology, which is important to the monitoring and early warning of landslides in similar areas.

     

  • loading
  • [1]
    HUANG Q H, CAI Y L. Spatial pattern of Karst rock desertification in the Middle of Guizhou Province, Southwestern China [J]. Environmental Geology, 2007, 52(7): 1325-1330.
    [2]
    李滨, 殷跃平, 高杨, 等. 西南岩溶山区大型崩滑灾害研究的关键问题[J]. 水文地质工程地质, 2020, 47(4): 5-13.
    [3]
    郑光, 许强, 巨袁臻, 等. 2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J]. 工程地质学报, 2018, 26(1): 223-240.
    [4]
    陆会燕, 李为乐, 许强, 等. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报(信息科学版), 2019, 44(9): 1342-1354.
    [5]
    MONDINI A C, S ANTANGELO M , ROCCHETTI M, et al. Sentinel-1 SAR amplitude imagery for rapid landslide detection [J]. Remote Sensing, 2019, 11(7): 760.
    [6]
    HU X, WANG T, PIERSON T C, et al. Detecting seasonal landslide movement within the Cascade landslide complex (Washington) using time-series SAR imagery [J]. Remote Sensing of Environment, 2016, 187: 49-61.
    [7]
    FIORUCCI F, GLORDAN G, SANTANGELO M, et al. Criteria for the optimal selection of remote sensing optical images to map event landslides [J]. Natural Hazards and Earth System Sciences, 2018, 18(1): 405-417.
    [8]
    冯光财, 许兵, 单新建, 等. 基于Landsat 8光学影像的巴基斯坦Awaran Mw7.7地震形变监测及参数反演研究[J]. 地球物理学报, 2015, 58(5): 1634-1644.
    [9]
    丁超,冯光财,周玉杉,等.尼泊尔地震触发滑坡识别和雪崩形变分析[J].武汉大学学报:信息科学版,2018,43(6): 847-853.
    [10]
    贺礼家, 冯光财, 冯志雄, 等. 哨兵-2号光学影像地表形变监测:以2016年Mw7.8新西兰凯库拉地震为例[J]. 测绘学报, 2019, 48(3): 339-351.
    [11]
    LACROIX P, DEHECQ A, TAIPE E. Irrigation-triggered landslides in a Peruvian desert caused by modern intensive farming [J]. Nature Geoscience, 2020, 13(1): 56-60.
    [12]
    YANG W T, WANG Y J, WANG Y Q, et al. Retrospective deformation of the Baige landslide using optical remote sensing images [J]. Landslides, 2020, 17(3): 659-668.
    [13]
    李海军, 董建辉, 朱要强, 等. 贵州发耳煤矿尖山营滑坡特征及成因机制[J]. 科学技术与工程, 2019, 19(26): 345-351.
    [14]
    王治华. 数字滑坡技术及其典型应用[J]. 中国地质调查, 2016, 3(3): 47-54.
    [15]
    王治华. 滑坡遥感[M]. 北京: 科学出版社, 2012: 104-105.
    [16]
    LEPRINCE S, BARBOT S, AYOUB F, et al. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1529-1558.
    [17]
    ROSU A, PIERROT-DESEILLIGNY M, DELORME A, et al. Measurement of ground displacement from optical satellite image correlation using the free open-source software MicMac [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 100: 48-59.
    [18]
    SCHMIDT D A, BURGMANN R. Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set [J]. Journal of Geophysical Research, 2003, 108(B9):2416-2429.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1340) PDF downloads(205) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return