• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 39 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
HE Kai, LI Bin, ZHAO Chaoying, GAO Yang, CHEN Liquan, LIU Pengfei. Identification of large-scale landslide hazards based on differences of geological structure prone to sliding and multiple-source data in karst mountainous areas[J]. CARSOLOGICA SINICA, 2020, 39(4): 467-477. doi: 10.11932/karst20200402
Citation: HE Kai, LI Bin, ZHAO Chaoying, GAO Yang, CHEN Liquan, LIU Pengfei. Identification of large-scale landslide hazards based on differences of geological structure prone to sliding and multiple-source data in karst mountainous areas[J]. CARSOLOGICA SINICA, 2020, 39(4): 467-477. doi: 10.11932/karst20200402

Identification of large-scale landslide hazards based on differences of geological structure prone to sliding and multiple-source data in karst mountainous areas

doi: 10.11932/karst20200402
  • Publish Date: 2020-08-25
  • The geological environment in karst mountainous areas of southwest China is complex and fragile, where large landslide hazards are common. The inaccurate geological cognition of karst mountainous area will directly lead to the lack of disaster identification ability. Based on the three kinds of main geological structures, exposed karst cliffs, complex rock formations and non-exposed karst slopes, which are prone to sliding in the karst mountainous areas of China, more applicable identification and detection methods of multiple-source data are discussed in this paper. For the karst cliff composed by thick layers of carbonate with small spatial impact area, the satellite-ground combination identification method is more applicable. The trend of dynamic deformation can be measured with the GNSS detection method, then the possible failure modes can be prejudged preliminarily. At the same time, it can help to make vector correction to the displacement from InSAR interpretation, to improve the degree of identification of the areas with the same or similar SAR observation conditions. For geological hazards with large spatial impact areas, the remote sensing technology based on InSAR is preferred to obtain surface deformation. For large deformation areas with high risk, the possible initiation mechanism can be studied or inversion analyzed in combination with the structure models liable to slide and external influence factors. The displacement identification method focuses on the increment of surface deformation is not applicable to the sudden landslides without enough early deformation. In view of such potential geological hazards, a comprehensive identification system can be constructed through multiple-source and multiple-dimensional monitoring, so as to explore a new way of landslide hazards identification and data analysis.

     

  • loading
  • [1]
    自然资源部地质灾害技术指导中心.全国地质灾害通报(2019年)[Z].北京:2019.
    [2]
    李正光.林区公路滑坡路害的成因与识别[J].林业科技,1987(3):52-54.
    [3]
    吴景坤,方祁,蔡军刚.滑坡识别及分类专家系统[J].北方交通大学学报,1993(1):73-77.
    [4]
    Ferretti A , Prati C , Rocca F . Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience & Remote Sensing, 2001, 39(1):1-20.
    [5]
    Lu Z , Zhang L . Frontiers of radar remote sensing[J]. Photogrammetric Engineering and Remote Sensing, 2014, 80(1):5-13.
    [6]
    张勤,赵超英,丁晓利,等.利用GPS与InSAR研究西安现今地面沉降与地裂缝时空演化特征[J].地球物理学报,2009,52(5):1214-1222.
    [7]
    Chaoying Z , Zhong L . Remote Sensing of Landslides-A Review[J]. Remote Sensing, 2018, 10(2):279.
    [8]
    王治华.滑坡遥感调查、监测与评估[J].国土资源遥感,2007(1):10-15,23,103.
    [9]
    Zhao C, Kang Y, Zhang Q, et al. Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method[J]. Remote Sensing, 2018, 10(7):993.
    [10]
    赵超英,刘晓杰,张勤,等.甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J].武汉大学学报(信息科学版),2019,44(7):996-1007.
    [11]
    童立强,祁生文,安国英,等.喜马拉雅山山区重大地质灾害遥感调查研究[M].北京:科学出版社, 2013.
    [12]
    葛大庆,戴可人,郭兆成,等.重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J].武汉大学学报(信息科学版),2019,44(7):949-956.
    [13]
    李为乐,许强,陆会燕,等.大型岩质滑坡形变历史回溯及其启示[J].武汉大学学报(信息科学版),2019,44(7):1043-1053.
    [14]
    朱建军,李志伟,胡俊.InSAR变形监测方法与研究进展[J].测绘学报,2017,46(10):1717-1733.
    [15]
    周超. 集成时间序列InSAR技术的滑坡早期识别与预测研究[D].北京:中国地质大学(北京),2018.
    [16]
    褚宏亮,殷跃平,曹峰,等.大型崩滑灾害变形三维激光扫描监测技术研究[J].水文地质工程地质,2015, 42(3):128-134.
    [17]
    张茂省,贾俊,王毅,等.基于人工智能(AI)的地质灾害防控体系建设[J].西北地质,2019,52(2):103-116.
    [18]
    许强.对地质灾害隐患早期识别相关问题的认识与思考[J/OL].武汉大学学报(信息科学版):1-11[2020-05-11].https://doi.org/10.13203/j.whugis20200043.
    [19]
    刘传正.崩塌滑坡灾害风险识别方法初步研究[J].工程地质学报,2019,27(1):88-97.
    [20]
    董秀军,裴向军,黄润秋.贵州凯里龙场镇山体崩塌基本特征与成因分析[J].中国地质灾害与防治学报,2015,26(3):3-9.
    [21]
    刘明鑫. 贵州山区典型崩塌成因机制与监测预警技术研究[D].成都:成都理工大学,2014.
    [22]
    何潇,陈洪凯,赵鹏,等.长江巫峡岸坡座滑式危岩稳定性研究:以望霞座滑式危岩为例[J].中国岩溶,2013,32(4):411-418.
    [23]
    张楠,徐永强,闫慧.岩溶山区浅层基岩滑坡失稳机理研究:以大方县金星组滑坡为例[J].水文地质工程地质,2017,44(6):142-146,162.
    [24]
    殷跃平.斜倾厚层山体滑坡视向滑动机制研究:以重庆武隆鸡尾山滑坡为例[J].岩石力学与工程学报,2010,29(2):217-226.
    [25]
    张保军,李振作,程俊祥,等.茅坪与新滩滑坡体变形机理类比研究[J].长江科学院院报,2008(1):40-43,57.
    [26]
    许世民,殷跃平,邢爱国.基于地震信号的贵州纳雍崩塌-碎屑流运动特征分析[J].中国地质灾害与防治学报,2020,31(2):1-8.
    [27]
    贺凯,高杨,王文沛,等.陡倾煤层开采条件下上覆山体变形破坏物理模型试验研究[J].地质力学学报,2018,24(3):399-406.
    [28]
    邱昕. 高速远程滑坡—碎屑流及其涌浪数值模拟分析[D].上海:上海交通大学,2015.
    [29]
    闫国强,殷跃平,黄波林,等.三峡库区巫山金鸡岭滑坡成因机制与变形特征[J].岩土力学,2019,40(S1):329-340.
    [30]
    王世昌,陈小婷,黄波林,等.三峡库区青石滑坡的变形特征及形成机理研究[J].人民长江,2013,44(S2):66-70.
    [31]
    He K, Chen C, Li B. Case study of a rockfall in Chongqing, China: movement characteristics of the initial failure process of a tower-shaped rock mass[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5):3295-3303.
    [32]
    王利. 地质灾害高精度GPS监测关键技术研究[D].西安:长安大学,2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1399) PDF downloads(257) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return