• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 39 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
LI Jun, CHU Hongliang, LI Bin, HE Kai, GAO Yang. Key scientific issues in research on landslide hazard induced by underground mining in mountainous areas with coal-bearing strata of southwestern China[J]. CARSOLOGICA SINICA, 2020, 39(4): 453-466. doi: 10.11932/karst20200401
Citation: LI Jun, CHU Hongliang, LI Bin, HE Kai, GAO Yang. Key scientific issues in research on landslide hazard induced by underground mining in mountainous areas with coal-bearing strata of southwestern China[J]. CARSOLOGICA SINICA, 2020, 39(4): 453-466. doi: 10.11932/karst20200401

Key scientific issues in research on landslide hazard induced by underground mining in mountainous areas with coal-bearing strata of southwestern China

doi: 10.11932/karst20200401
  • Publish Date: 2020-08-25
  • Underground mining activities often trigger large-scale landslide on mountain slopes, causing casualties and property losses. Based on the analysis of the development characteristics of landslide hazard induced by underground mining, this paper considers that such landslide hazard often occur in the cliff belts of fold wings and core composed of layered carbonate rock and clastic rock strata in mountainous area with coal-bearing strata of southwestern China, which is closely related to factors such as topography, stratum structure and underground mining engineering activities. It is pointed out the following processes that large-scale landslide hazard induced by thin seam mining,(1) The overlying rock roof collapses and the overburden rock roof separates, and the stress transfer from the bottom to the top in and between the overburden rock in the goaf after the mined-out; (2)The formation of underground water migration channels accelerates the failure and expansion of rock mass structures on a larger scale, accelerating the loosening and failure of rock mass structural planes;(3) The uneven settlement of the overburden rock strata leads to fractures at the foot of the slope, and the large-scale rock mass structural surface of the mountain body gradually deforms under tension shear or compression shear, eventually resulting cumulative damage and large-scale landslide hazard. At the same time, this study suggests that the calculation method of traditional empirical formula is no longer applicable to this type of landslide hazard induced by underground mining.It is recommended to develop the research on following key scientific issues, including the interaction relationship between the geological structure and the landslide hazard induced by underground mining of the karst mountainous area with coal-bearing strata of southwestern China, the cumulative fracture damage and rock mass loosening in the upper part of thin seam goaf, fracture expansion and karst conduit flow, the chain response mechanism of fracture flow change of upper mountain in the mined area of thin ore bed, and the evaluation method of landslide hazard induced by underground mining,etc. The purpose is to promote the the development of prevention and mitigation work of geological hazard induced by underground mining.

     

  • loading
  • [1]
    Krahn J,Morgenstern N R. Mechanics of the Frank slide[C]//Rock Engineering for Foundations&Slopes.ASCE,1976: 309.
    [2]
    Bentley S P, Siddle H J. Landslide research in the South Wales coalfield[J]. Engineering Geology,1996,43(1): 65-80.
    [3]
    Froude M J, Petley D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences, 2018, 18(8): 2161-2181.
    [4]
    何万龙.山区开采沉陷与采动损害[M].北京:中国科学技术出版社,2003.
    [5]
    黄刚,郑达.贵州开阳磷矿山体崩塌形成机理与数值模拟[J].中国地质灾害与防治学报,2013,24(1):46-50,55.
    [6]
    孙广忠. 中国典型滑坡[M]. 北京:科学出版社,1988.
    [7]
    殷跃平,康宏达,张颖.链子崖危岩体稳定性分析及锚固工程优化设计[J].岩土工程学报,2000,20(5):599-603.
    [8]
    Zheng D, Frost J D, Huang R Q, et al. Failure process and modes of rockfall induced by underground mining: A case study of Kaiyang Phosphorite Mine rockfalls[J]. Engineering geology, 2015, 197(10): 145-157.
    [9]
    李滨,王国章,冯振,等.地下采空诱发陡倾层状岩质斜坡失稳机制研究[J].岩石力学与工程学报,2015,34(6):1148-1161.
    [10]
    黄润秋,许强.中国典型灾难性滑坡[M].北京:科学出版社,2008.
    [11]
    王磊,李滨,冯振,等.武隆县羊角场镇厚层灰岩山体大型危岩体破坏模式及成因机制研究[J].地质学报,2015,89(2):461-471.
    [12]
    He K, Yin Y P, Li B, et al. The mechanism of the bottom-crashing rockfall of a massive layered carbonate rock mass at Zengziyan, Chongqing, China[J]. Journal of Earth System Science, 2019, 128(4): 104.
    [13]
    赵建军,马运韬,蔺冰,等.平缓反倾采动滑坡形成的地质力学模式研究:以贵州省马达岭滑坡为例[J].岩石力学与工程学报,2016,35(11):2217-2224.
    [14]
    殷跃平.斜倾厚层山体滑坡视向滑动机制研究:以重庆武隆鸡尾山滑坡为例[J].岩石力学与工程学报,2010,29(2):217-226.
    [15]
    李滨,冯振,张勤,等.岩溶山区特大崩滑灾害成灾模式与早期识别研究[M]. 北京:科学出版社,2016.
    [16]
    董秀军,裴向军,黄润秋.贵州凯里龙场镇山体崩塌基本特征与成因分析[J].中国地质灾害与防治学报,2015,26(3):3-9.
    [17]
    郑光,许强,巨袁臻,等. 2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J].工程地质学报,2018,26(1):223-240.
    [18]
    黄润秋.中国西南岩石高边坡的主要特征及其演化[J].地球科学进展,2005,20(3):292-297.
    [19]
    李滨,殷跃平,高杨,等.西南岩溶山区大型崩滑灾害研究的关键问题[J].水文地质工程地质,2020,47(4):5-13.
    [20]
    贺凯,陈春利,冯振,等.塔柱状岩体崩塌灾害研究现状[J].地质力学学报,2016,22(3):714-724.
    [21]
    贺凯. 塔柱状岩体崩塌机理研究[D].西安:长安大学,2015.
    [22]
    Shi W B, Yu X X, Sherizadeh T, et al. Deformation and Failure Mechanism of a collapse induced by underground mining—A study of the Pusa collapse in Guizhou province of China[C]//53rd US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2019.
    [23]
    刘天泉.大面积采场引起的采动影响及其时空分布规律[J].矿山测量,1981(1):70-77.
    [24]
    刘天泉.矿山岩体采动响应与控制工程学及其应用[J].科技导报,1994(12):21-23.
    [25]
    刘天泉.矿山岩层和地表变形规律及其与地质因素的关系[J].煤田地质与勘探,1985(3):31-35.
    [26]
    刘天泉. 矿山采动影响工程学及其应用[A].世纪之交的煤炭科学技术学术年会论文集[C].北京:《煤炭学报》编辑部, 1997, 48-51.
    [27]
    钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.
    [28]
    钱鸣高.采场上覆岩层岩体结构模型及其应用[J].中国矿业学院学报,1982(2):6-16.
    [29]
    钱鸣高,缪协兴,何富连.采场“砌体梁”结构的关键块分析[J].煤炭学报,1994,19(6):557-563.
    [30]
    钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):2-7.
    [31]
    何满潮,黄润秋,王金安,等.工程地质数值法[M].北京:科学出版社,2006.
    [32]
    左建平,孙运江,钱鸣高.厚松散层覆岩移动机理及“类双曲线”模型[J].煤炭学报,2017,42(6):1372-1379.
    [33]
    Guo W, Zhao G, Lou G, et al. A new method of predicting the height of the fractured water-conducting zone due to high-intensity longwall coal mining in China[J]. Rock Mechanics and Rock Engineering, 2019, 52(8): 2789-2802.
    [34]
    Tang F. Research on mechanism of mountain landslide due to underground mining[J]. Journal of Coal Science and Engineering (China), 2009, 15(4): 351.
    [35]
    Marschalko M, Yilmaz I, Bednárik M, et al. Deformation of slopes as a cause of underground mining activities: three case studies from Ostrava-Karviná coal field (Czech Republic)[J]. Environmental Monitoring and Assessment, 2012, 184(11): 6709-6733.
    [36]
    汤伏全.采动滑坡的机理分析[J].西安矿业学院学报,1989(3):32-36.
    [37]
    龙建辉,李坤,郭晓娟.地下采动影响下滑坡稳定性及推力研究综述[J].太原理工大学学报,2019,50(2):141-152.
    [38]
    Franks C A M, Geddes J D. Subsidence on steep slopes due to longwall mining[J]. International Journal of Mining and Geological Engineering, 1986, 4(4): 291-301.
    [39]
    林锋,孙赤,冯亮.近水平煤层开采诱发崩塌形成机理分析[J].中国地质灾害与防治学报,2013,24(3):8-12.
    [40]
    Tang J, Dai Z, Wang Y, et al. Fracture failure of consequent bedding rock slopes after underground mining in mountainous area[J]. Rock Mechanics and Rock Engineering, 2019, 52(8): 2853-2870.
    [41]
    Tang J, Dai Z, Wang Y, et al. Fracture failure of consequent bedding rock slopes after underground mining in mountainous area[J]. Rock Mechanics and Rock Engineering, 2019, 52(8): 2853-2870.
    [42]
    Yin Y P, Sun P, Zhang M, et al. Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan, Chongqing, China[J]. Landslides, 2011, 8(1): 49-65.
    [43]
    Fan G, Zhang D, Zhai D, et al. Laws and mechanisms of slope movement due to shallowly buried coal seam mining under ground gully[J]. Journal of Coal Science and Engineering (China), 2009, 15(4): 346.
    [44]
    Zhang D, Fan G, Wang X. Characteristics and stability of slope movement response to underground mining of shallow coal seams away from gullies[J]. International Journal of Mining Science and Technology, 2012, 22(1): 47-50.
    [45]
    Liu H,Deng K,Zhu X,et al.Effects of mining speed on the developmental features of mining-induced ground fissures[J].Bulletin of Engineering Geology and the Environment,2019,78(8): 6297-6309.
    [46]
    范士凯.采空区上边坡稳定问题[J].资源环境与工程,2006,20(S1):617-627.
    [47]
    Daughton G, Noake J S, Siddle H J. Some hydrogeological aspects of hillsides in South Wales[C]//Proceedings of a Conference Rock Engineering,Newcastle upon Tyne, 1976: 423-439.
    [48]
    Gostelow T P. The development of complex landslides in the Upper Measures of Blaina, South Wales[C]//Proc. Symposium on the Geotechnics of Structually Complex Formations. Capri., 1977: 225-268.
    [49]
    Benko B. Numberial modelling of complex slope deformations[D]. Saskatoon :University of Saskatchewan, 1997.
    [50]
    Benko B, Stead D. The Frank slide: a reexamination of the failure mechanism[J]. Canadian Geotechnical Journal, 1998, 35(2):299-311.
    [51]
    Marschalko M, Fuka M, Treslin L. Influence of mining activity on selected landslide in the Ostrava-Karvina coalfield[J]. Acta Montanistica Slovaca, 2008, 13(1): 58-65.
    [52]
    Marschalko M,Yilmaz I,Bednárik M,et al.Influence of underground mining activities on the slope deformation genesis:Doubrava Vrchovec,Doubrava Ujala and Staric case studies from Czech Republic[J].Engineering Geology,2012,147(10): 37-51.
    [53]
    Grenon M, Caudal P, Amoushahi S, et al. Analysis of a large rock slope failure on the east wall of the LAB chrysotile mine in Canada: back analysis, impact of water infilling and mining activity[J]. Rock Mechanics and Rock Engineering, 2017, 50(2): 403-418.
    [54]
    Wagner E H R. Surface effects of total coal-seam extraction by underground mining methods[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1991,91(7): 221-231.
    [55]
    刘传正.中国崩塌滑坡泥石流灾害成因类型[J].地质论评,2014,60(4):858-868.
    [56]
    Brady B H G, Brown E T. Rock mechanics: for underground mining[M]. Springer science & business media, 1993.
    [57]
    Huang R Q, Chan L S. Human-induced landslides China: Mechanism study and its implications on slope management[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(16): 2766-2777.
    [58]
    Lin F, Wu L Z, Huang R Q, et al. Formation and characteristics of the Xiaoba landslide in Fuquan,Guizhou,China[J].Landslides,2018,15(4):669-681.
    [59]
    刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京: 中国工业出版社,1965.
    [60]
    刘天泉,仲帷林,焦传武,等.煤矿地表移动与覆岩破坏规律及其应用[M]. 北京:煤炭工业出版社,1981.
    [61]
    国家安全监管总局,国家煤矿安监局,国家能源局,国家铁路局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M].北京:煤炭工业出版社,2017.
    [62]
    黄庆享.采场老顶初次来压的结构分析[J].岩石力学与工程学报,1998,17(5):521-526.
    [63]
    Wang H, Zhang D, Wang X, et al. Visual exploration of the spatiotemporal evolution law of overburden failure and mining-induced fractures: a case study of the Wangjialing coal mine in China[J]. Minerals, 2017, 7(3): 35.
    [64]
    Liu S, Li W, Wang Q, et al. Investigation on mining-induced fractured zone height developed in different layers above Jurassic coal seam in western China[J]. Arabian Journal of Geosciences, 2018, 11(2): 30.
    [65]
    Liu S, Li W, Wang Q. Height of the water-flowing fractured zone of the Jurassic coal seam in northwestern China[J]. Mine Water and the Environment, 2018, 37(2): 312-321.
    [66]
    Chen Y, Zhao G, Wang S, et al. Investigations of the height of fractured zones in overburden induced by undersea mining[J]. Arabian Journal of Geosciences, 2019, 12(20): 618.
    [67]
    Li L, Li F, Zhang Y, et al. Formation mechanism and height calculation of the caved zone and water-conducting fracture zone in solid backfill mining[J]. International Journal of Coal Science & Technology, 2020,7(1): 208-215.
    [68]
    Cheng G, Chen C, Ma T, et al. A case study on the strata movement mechanism and surface deformation regulation in Chengchao underground iron mine[J]. Rock Mechanics and Rock Engineering, 2017, 50(4): 1011-1032.
    [69]
    Rezaei M, Hossaini M F, Majdi A. Determination of longwall mining-induced stress using the strain energy method[J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2421-2433.
    [70]
    徐廷甫,尹志明,邓月华.地下采动条件下顺层岩质边坡稳定性分析[J].地下空间与工程学报,2011,7(6):1241-1245,1262.
    [71]
    李滨,王国章,冯振,等.陡倾层状岩质斜坡极限平衡稳定分析[J].岩土工程学报,2015,37(5):839-846.
    [72]
    Li B, Feng Z, Wang G, et al. Processes and behaviors of block topple avalanches resulting from carbonate slope failures due to underground mining[J]. Environmental Earth Sciences, 2016, 75(8): 694.
    [73]
    贺凯,高杨,殷跃平,等.基于岩体损伤的大型高陡危岩稳定性评价方法[J].水文地质工程地质,2020,47(4):82-89.
    [74]
    Tian C, Liu Y, Yang X, et al. Development characteristics and field detection of overburden fracture zone in multiseam mining:A case study[J].Energy Science & Engineering, 2020,8(3):602-615.
    [75]
    Murphy M M. Shale failure mechanics and intervention measures in underground coal mines: Results from 50 years of ground control safety research[J]. Rock mechanics and rock engineering, 2016, 49(2): 661-671.
    [76]
    Wang C, Lu Y, Qin C, et al. Ground Disturbance of Different Building Locations in Old Goaf Area: A Case Study in China[J]. Geotechnical and Geological Engineering, 2019,37(5): 4311-4325.
    [77]
    赵建军,蔺冰,马运韬,等.缓倾煤层采空区上覆岩体变形特征物理模拟研究[J].煤炭学报,2016,41(6):1369-1374.
    [78]
    邓茂林,许强,郑光,等.基于离心模型试验的武隆鸡尾山滑坡形成机制研究[J].岩石力学与工程学报,2016,35(S1):3024-3035.
    [79]
    贺凯,高杨,王文沛,等.陡倾煤层开采条件下上覆山体变形破坏物理模型试验研究[J].地质力学学报,2018,24(3):399-406.
    [80]
    刘红元,唐春安,芮勇勤.多煤层开采时岩层垮落过程的数值模拟[J].岩石力学与工程学报,2001,20(2):190-196.
    [81]
    王玉川,巨能攀,赵建军,等. 缓倾煤层采空区上覆山体滑坡形成机制分析[J].工程地质学报,2013,21(1):61-68.
    [82]
    Porathur J L, Srikrishnan S, Verma C P, et al. Slope stability assessment approach for multiple seams highwall mining extractions[J]. International journal of rock mechanics and mining sciences, 2014, 70(9): 444-449.
    [83]
    Liu C, Li H, Mitri H. Effect of Strata Conditions on Shield Pressure and Surface Subsidence at a Longwall Top Coal Caving Working Face[J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1523-1537.
    [84]
    Wang X,Zhang D,Zhang C,et al. Mechanism of mining-induced slope movement for gullies overlaying shallow coal seams[J].Journal of Mountain Science,2013,10(3): 388-397.
    [85]
    Feng Z, Li B, Yin Y P, et al. Rockslides on limestone cliffs with subhorizontal bedding in the southwestern calcareous area of China[J]. Natural Hazards and Earth System Sciences, 2014, 14(9): 2627-2635.
    [86]
    Gu R, Ozbay U. Distinct element analysis of unstable shear failure of rock discontinuities in underground mining conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 68(6): 44-54.
    [87]
    Kulatilake P H S W, Ge Y. Investigation of stability of the critical rock blocks that initiated the Jiweishan landslide in China[J]. Geotechnical and Geological Engineering, 2014, 32(5): 1291-1315.
    [88]
    唐春安,徐曾和,徐小荷.岩石破裂过程分析RFPA2D系统在采场上覆岩层移动规律研究中的应用[J].辽宁工程技术大学学报(自然科学版),1999,18(5):456-458.
    [89]
    陈峰.基于数值模拟的采动影响下覆岩裂隙演化过程分析[J].中国地质灾害与防治学报,2014,25(2):60-64.
    [90]
    胡海峰,康建荣.基于有限元法的采动坡体稳定 性计算[J].太原理工大学学报,2000,31(4):343-345,353.
    [91]
    李腾飞,李晓,王瑞青.地下采矿诱发斜坡移动变形分析[J].工程地质学报,2014,22(1):64-70.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1543) PDF downloads(219) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return