• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 39 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
YU Xiaoya, YANG Guangqin, DING Zhiqiang, YU Rui, PAN Chengchen. Effects of exposed stone teeth on the distribution and leaf phenotypic variation of the endangered plant Loropetalum subcordatum in Maolan National Nature Reserve[J]. CARSOLOGICA SINICA, 2020, 39(3): 352-358. doi: 10.11932/karst20200304
Citation: YU Xiaoya, YANG Guangqin, DING Zhiqiang, YU Rui, PAN Chengchen. Effects of exposed stone teeth on the distribution and leaf phenotypic variation of the endangered plant Loropetalum subcordatum in Maolan National Nature Reserve[J]. CARSOLOGICA SINICA, 2020, 39(3): 352-358. doi: 10.11932/karst20200304

Effects of exposed stone teeth on the distribution and leaf phenotypic variation of the endangered plant Loropetalum subcordatum in Maolan National Nature Reserve

doi: 10.11932/karst20200304
  • Publish Date: 2020-06-25
  • The heterogeneous habitat plays an important role in conservation and restoration of rare and endangered plants. In karst areas, the common exposed stone teeth can cause the differentiation of soil physical and chemical properties, thus affecting the distribution and adaptation characteristics of rare and endangered plant populations. To examine the distribution and adaptation characteristics of endangered plants in heterogeneous habitat, we investigated the leaf phenotypic variation and the distance between plant and stone teeth of Loropetalum subcordatum population by the transect method in the Maolan National Nature Reserve, Libo county, China. We divided the distance into three groups (0 cm, 0.1-10 cm, and above 10 cm) for analysis. The results show that, (1) among 515 individual of Loropetalum subcordatum investigated, 388 pieces (75.3%) have DBH≥1 cm. The maximum DBH is 17.5 cm, and the distance between it and the stone teeth is 7 cm. In the 0 cm distance group, there are 89 DBH≥1 cm individuals with average 3.44±2.26 cm, and seedlings and saplings are present in 19 individuals. In the 0-10 cm distance group, 21 pieces have DBH≥1cm with average 4.38±4.55 cm, and seedlings and saplings are 62 individuals. In the above 10 cm distance group, there were 278 DBH≥1cm individuals with average 3.93±2.75 cm, and seedlings and saplings are 46 individuals. (2) The length of Loropetalum subcordatum population’s leaf is 106.60±19.28 mm, and the width is 47.53±10.10 mm, the ratio of width to length is 0.45±0.08, the thickness is 0.32±0.05 mm, respectively. The petiole length of Loropetalum subcordatum population is 12.82±3.35 mm and diameter is 1.43±0.35 mm, respectively. There are no significant differences in the length, width, and petiole diameter of Loropetalum subcordatum leaf in the distance groups 0 cm, 0.1-10 cm and ≥10 cm, but the leaf thickness, petiole length and leaf width/length are significantly different(P<0.01). On the whole, the stone teeth has a profound influence on the distribution and leaf characteristics of Loropetalum subcordatum.

     

  • loading
  • [1]
    张翠琴,姬志峰,林丽丽,等.五角枫种群表型多样性[J].生态学报,2015,35(16) : 5343-5352.
    [2]
    Wright I J, Ackerly D D, Bongers F, et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests[J]. Annals of Botany,2007, 99(5):1003-1015.
    [3]
    朱弘, 朱淑霞, 李涌福, 等. 尾叶樱桃天然种群叶表型性状变异研究[J]. 植物生态学报,2018,42(12):1168-1178.
    [4]
    乔琦, 邢福武, 陈红锋,等. 中国特有濒危植物伯乐树叶的结构特征[J]. 武汉植物学研究, 2010, 28(2):229-233.
    [5]
    张腾驹, 陈小红, 康喜坤, 等. 四川省珙桐天然种群叶表型多样性[J]. 生态学杂志, 2019, 38(1):35-43.
    [6]
    杨锐, 张博睿, 王玲玲,等. 元谋干热河谷植物功能性状组合的海拔梯度响应[J]. 生态环境学报, 2015,24(1):49-56.
    [7]
    汪洋, 田玉娥, 甘小燕,等. 湖北红椿天然居群表型变异地理趋势面研究[J].森林与环境学报,2018,38(3):309-317.
    [8]
    Wang M Z, Bu X Q, Li L,et al.Constraints on the evolution of phenotypic plasticity in the clonal plant hydrocotyle vulgaris[J]. Journal of Evolutionary Biology,2018,31(7):1006-1017.
    [9]
    G?ransson H , Edwards P J , Perreijn K , et al. Rocks create nitrogen hotspots and N∶P heterogeneity by funnelling rain[J]. Biogeochemistry, 2014, 121(2):329-338.
    [10]
    Li S, Ren H D, Xue L, et al. Influence of bare rocks on surrounding soil moisture in the karst rocky desertification regions under drought conditions [J]. Catena, 2014, 116(3):157-162.
    [11]
    Sheng L, Birk S, Liang X, et al. Seasonal changes in the soil moisture distribution around bare rock outcrops within a karst rocky desertification area (fuyuan county, yunnan province, China)[J]. Environmental Earth Sciences, 2016, 75(23):1-10.
    [12]
    Wang D, Shen Y, Li Y, et al. Rock outcrops redistribute organic carbon and nutrients to nearby soil patches in three karst ecosystems in SW China [J]. Plos One, 2016, 11(8):e0160773.
    [13]
    张忠华. 桂林岩溶石山阴香种群生态学研究[D].桂林:广西师范大学,2007.
    [14]
    张忠华,胡刚,祝介东,等.喀斯特森林土壤养分的空间异质性及其对树种分布的影响[J].植物生态学报,2011,35(10):1038-1049.
    [15]
    欧祖兰,王占军,陈延松,等.鹞落坪半夏生境地主要草本种群生态位特征[J].华南农业大学学报,2016,37(4):82-89.
    [16]
    耿宇鹏,张文驹,李博,等.表型可塑性与外来植物的入侵能力[J].生物多样性,2004(4):447-455.
    [17]
    谢春平, 方彦, 方炎明. 乌冈栎天然居群叶表型变异[J]. 四川农业大学学报, 2011, 29(2):191-198.
    [18]
    杨贺雨, 卫海燕, 桑满杰,等. 华中五味子叶表型可塑性及环境因子对叶表型的影响[J]. 植物学报,2016,51(3):322-334.
    [19]
    Liu C C,Liu Y G,Guo K, et al.Exploitation of patchy soil water resources by the clonal vine Ficus tikoua in karst habitats in southwestern China[J].Acta Physiologiae Plantarum,2011, 33( 1) :93-102.
    [20]
    梁宽,樊燕,卜文圣,等.石灰岩山地优势种淡竹的表型可塑性研究[J].江西农业大学学报, 2017, 39( 6) : 1178-1186.
    [21]
    何跃军,韩文萍,钟章成.亚热带常绿阔叶林不同土壤和林冠环境下蝴蝶花的克隆可塑性[J].应用生态学报,2011,22(2) : 337-342.
    [22]
    Valuiskikh O E , Teteryuk L V . Phenotypic variation of Gymnadenia conopsea (L.) R. Br. (Orchidaceae) in marginal populations on limestones in the northeast of European Russia[J]. Russian Journal of Ecology, 2014, 45(1):24-32.
    [23]
    Yuanita Rachmawati, Budi Setiadi Daryono, Ganies Riza Ariestya. Phenotypical characters of melon (Cucumis melo L.) in response to karst critical land. Biotropic,2018,2 (1): 1-11.
    [24]
    金静,钟章成,刘锦春,等.石灰岩地区土壤水分对木豆表型可塑性的影响[J].西南农业大学学报(自然科学版),2005(1):89-92.
    [25]
    邢福武,Richard. 香港的植物区系[J]. 热带亚热带植物学报,1999,4(4):295-307.
    [26]
    俞筱押,熊俊彩,余瑞,等.贵州茂兰珍稀濒危植物四药门花种群特征[J].广西植物,2018,38(7):836-842.
    [27]
    李柏君. 基于SRAP分子标记的四药门花种群遗传多样性分析[D].广州:华南农业大学,2016.
    [28]
    俞筱押.喀斯特森林木本植物无性繁殖体残存机制:Ⅰ.概念与理论框架[J].黔南民族师范学院学报,2012,32(6):108-112.
    [29]
    周政贤. 茂兰喀斯特森林科学考察集[M]. 贵阳:贵州人民出版社,1987.
    [30]
    PérezHarguindeguy N,Díaz S, Garnier E, et al. New handbook for standardised measurement of plant functional traits worldwide [J]. Australian Journal of Botany, 2013, 61(3): 167-234.
    [31]
    王伟,骆争荣,周荣飞,等.百山祖常绿阔叶林木本植物的生境相关性分析[J].生物多样性,2011,19(2):134-142.
    [32]
    周运超, 潘根兴. 茂兰森林生态系统对岩溶环境的适应与调节[J]. 中国岩溶, 2001, 20(1):47-52.
    [33]
    Zhang Z H, Hu G, Zhu J D, et al. Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China[J]. Ecological Research, 2010, 25(6):1151-1160.
    [34]
    朱守谦,何纪星,魏鲁明,等.茂兰喀斯特森林小生境特征研究[A]//朱守谦 主编. 喀斯特森林生态研究III [C].贵阳:贵州科技出版社,2003:38-48.
    [35]
    俞国松,王世杰,容丽.茂兰喀斯特森林演替阶段不同小生境的小气候特征[J].地球与环境,2011,39(4):469-477.
    [36]
    李阳兵,王世杰,熊康宁.浅议西南岩溶山地的水文生态效应研究[J].中国岩溶,2003,22(1):24-27.
    [37]
    邓晓琪,王世杰,容丽.喀斯特区专属植物水分来源研究[J].地球与环境,2012,40(2):154-160.
    [38]
    刘立斌,钟巧连,倪健.基于生物量回归方程估算黔中喀斯特常绿落叶阔叶混交林木本植物的根系生物量[J].生态学报,2018,38(24):8726-8732.
    [39]
    俞筱押,李玉辉,马遵平.云南石林喀斯特小生境木本植物多样性特征[J].山地学报,2007(4):438-447.
    [40]
    Saenger P, West P W. Phenotypic variation of the mangrove species Avicennia marina (Forssk.) Vierh. from seven provenances around Australia[J]. Aquatic Botany, 2018, 149:28-32.
    [41]
    武德昌,王彦军,贺伟丽,等.冀南辖域缘毛太行花物候特征与资源分布[J].河北林业科技,2015(5):23-27,40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1523) PDF downloads(279) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return