• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 39 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
WEN Dongni, YANG Cheng, YANG Lin, QIN Xinghua, MENG Lei, HE Qiuxiang, ZHU Tongbin, Christoph Müller. Effects of agricultural cultivation on soil organic nitrogen mineralization in karst regions[J]. CARSOLOGICA SINICA, 2020, 39(2): 189-195. doi: 10.11932/karst20200207
Citation: WEN Dongni, YANG Cheng, YANG Lin, QIN Xinghua, MENG Lei, HE Qiuxiang, ZHU Tongbin, Christoph Müller. Effects of agricultural cultivation on soil organic nitrogen mineralization in karst regions[J]. CARSOLOGICA SINICA, 2020, 39(2): 189-195. doi: 10.11932/karst20200207

Effects of agricultural cultivation on soil organic nitrogen mineralization in karst regions

doi: 10.11932/karst20200207
  • Publish Date: 2020-04-25
  • The mineralization of organic N dominates the production of inorganic N, therefore, it is of great significance to study the change of soil N availability and to guide N fertilization. Soil samples under navel orange, corn and rubber plantations were collected in karst regions of Jianshui,Mengzi and Mengla, Yunnan Province, respectively, and the adjacent undisturbed grassland and natural forest were sampled as control. The 15N tracing technique was used to investigate the changes in the mineralization rate of organic N to NH〖_4^+〗 (MNorg) in calcareous soil when grassland or natural forest was converted to croplands in karst regions, and the contributions of the mineralization of labile organic N (MNlab) and recalcitrant organic N (MNrec) to MNorg were quantified. The results showed that MNorg rate in forest soils (8.94 mg N?kg-1 d-1) was significantly higher than that in grassland soils (1.41-2.46 mg N?kg-1 d-1). Soil MNlab dominated MNorg, accounting for 80.6%-93.1% of MNorg in grassland soils and 62.2% in forest soils, respectively. Soil MNorg was significantly reduced to 0.53-0.89 mg N?kg-1 d-1 during the conversion of grassland or forest to cropland, with a decreased ratio of 62.5%-90.1%. When grassland was converted to navel orange or corn plantations, MNlab rather than MNrec was responsible for the decreased MNorg. However, the decreased MNorg was mainly attributed to the simultaneous decline in MNlab and MNrec when natural forest was converted to rubber plantation. The contents of soil organic carbon, total N, total phosphorus, total calcium and total magnesium, as well as pH, CEC and WHC were significantly reduced during the conversion of grassland or natural forest to cropland in karst regions, all of which were positively correlated with soil MNorg and MNlab, indicating that the changes in soil physical and chemical properties during agricultural cultivation was an important factor affecting MNorg.

     

  • loading
  • [1]
    Binkley D, Hart S C. The components of nitrogen availability assessments in forest soils[M]. Advances in soil science. New York: Springer, 1989: 57-112.
    [2]
    Mackie-Dawson L A, Pratt S M, Millard P. Root growth and nitrogen uptake in sycamore (Acer pseudoplantanus L.) seedlings in relation to nitrogen supply[J]. Plant and Soil, 1994, 158(2): 233-238.
    [3]
    Booth M S, Stark J M, Rastetter E B. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data[J]. Ecological Monographs, 2005(75): 139-157.
    [4]
    李德军.珠江三角洲森林和蔬菜地土壤一氧化氮排放[D].广州:中国科学院研究生院(广州地球化学研究所), 2007.
    [5]
    Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: How can it occur?[J]. Biogeochemistry, 1991, 13(2):87-115.
    [6]
    Kolberg R, Rouppet B, Westfall D G, et al. Evaluation of an in situ net soil nitrogen mineralization method in dryland agroecosystem[J]. Soil Science Society of America Journal, 1997, 61(3): 504-508.
    [7]
    Joanne B, Chen C R, Xu Z H, et al. Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia[J].Soil Biology and Biochemistry,2007(39):426-433.
    [8]
    肖好燕,刘宝,余再鹏,等.亚热带不同林分土壤矿质氮库及氮矿化速率的季节动态[J].应用生态学报,2017,28(3):730-738.
    [9]
    沙丽清,孟盈,冯志立,等.西双版纳不同热带森林土壤氮矿化和硝化作用研究[J]. 植物生态学报,2000, 24(2):152-156.
    [10]
    王光军,田大伦,朱凡,等.湖南省4种森林群落土壤氮的矿化作用[J]. 生态学报, 2009(3):1607-1609.
    [11]
    单玉梅,温超,常虹,等.不同放牧强度下荒漠草原土壤氮矿化季节性动态研究[J]. 生态环境学报, 2019(4):723-731.
    [12]
    罗亲普,龚吉蕊,徐沙,等.氮磷添加对内蒙古温带典型草原净氮矿化的影响[J]. 植物生态学报, 2016(5):480-492.
    [13]
    刘颖慧,李悦,牛磊,等.温度和湿度对内蒙古草原土壤氮矿化的影响[J]. 草业科学, 2014(3):349-354.
    [14]
    Zhang J B, Zhu T B, Meng T Z, et al. Agricultural land use affects nitrate production and conservation in humid subtropical soils in China[J]. Soil Biology & Biochemistry, 2013, 62(5):107-114.
    [15]
    王乐云,田飞飞,能惠,等.不同施肥处理对农田土壤有机氮组分及其矿化的影响[J]. 中国海洋大学学报(自然科学版)2019(4):117-127.
    [16]
    郑洁,张继宗,翟丽梅,等.洱海流域农田土壤氮素的矿化及其影响因素[J]. 中国环境科学, 2010(S1):35-40.
    [17]
    袁道先.全球岩溶生态系统对比:科学目标和执行计划[J].地球科学进展, 2001, 16(4): 461-466.
    [18]
    Jiang Z, Lian Y, Qin X. Rocky desertification in Southwest China: Impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132(3):1-12.
    [19]
    陈同庆,魏兴琥,关共凑,等.粤北岩溶区不同土地利用方式对土壤钙离子的影响[J]. 热带地理, 2014, 34(3):337-343.
    [20]
    Wang W, Smith C J, Chalk, P M, et al. Evaluating chemical and physical indices of nitrogen mineralization capacity with an unequivocal reference[J]. Soil Science Society of America Journal, 2001(65):368-376.
    [21]
    曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J]. 地球科学进展,2003,18(1):37-44.
    [22]
    曹建华,袁道先,章程,等.受地质条件制约的中国西南岩溶生态系统[J]. 地球与环境, 2004, 32(1): 1-8.
    [23]
    Bengtsson G, Bengtson P, M?nsson K F. Gross nitrogen mineralization, immobilization, and nitrification rates as a function of soil C/N ratio and microbial activity[J]. Soil Biology and Biochemistry, 2003(35):143-154.
    [24]
    Zhu T B, Zhang J B, Meng T Z, et al. Tea plantation destroys soil retention of NO〖_3^-〗, and increases N2O emissions in subtropical China[J]. Soil Biology and Biochemistry, 2014, 73(6):106-114.
    [25]
    鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000.
    [26]
    中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000.
    [27]
    Müller C, Rütting T, Kattge J, et al.Estimation of parameters in complex 15N tracing models by Monte Carlo sampling.Soil Biology and Biochemistry,2007(39):715-726.
    [28]
    Lovett G M, Rueth H. Potential nitrogen mineralization and nitrification in American beech and sugar maple stands along a nitrogen deposition gradient in the northeastern US[J]. Ecological Applications, 1999, 9(1330): 44.
    [29]
    Patra A K, Abbadie L, Clays-Josserand A, et al. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils[J]. Environmental Microbiology, 2006, 8(6): 1005-1016.
    [30]
    Barrett J E, Burke I C. Potential nitrogen immobilization in grassland soils across a soil organic matter gradient[J]. Soil Biology and Biochemistry, 2000(32):1707-1716.
    [31]
    Mack M C, D’Antonio C M. Exotic grasses alter controls over soil nitrogen dynamics in a Hawaiian woodland[J]. Ecological Applications, 2003(13): 154-166.
    [32]
    Wang J, Zhang J B, Müller C, et al. Temperature sensitivity of gross N transformation rates in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Journal of Soils and Sediments, 2017, 17(2):423-431.
    [33]
    Fu M H, Xu X C, Tabatabai M A. Effect of pH on nitrogen mineralization in crop-residue-treated soils[J]. Biology and Fertility of Soils, 1987(5):115-119.
    [34]
    Xiao K C, Xu J M, Tang C X,et al. Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electrokinesis and receiving crop residue amendments[J]. Soil Biology and Biochemistry, 2013(67):70-84.
    [35]
    张凯乐.探究酸性土壤 pH 与碳氮矿化之间的相互关系[D]. 杭州:浙江大学, 2017.
    [36]
    王其兵,李凌浩,白永飞,等.气候变化对草甸草原土壤氮素矿化作用影响的实验研究[J].植物生态学报, 2000, 24(6):687-692.
    [37]
    Schuur E A, Matson P A. Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in hawaiian montane forest[J]. Oecologia, 2001, 128(3):431-442.
    [38]
    Pandey C B, Rai R B, Singh L. Seasonal dynamics of mineral N pools and N-mineralization in soils under homegarden trees in South Andaman, India[J]. Agroforestry Systems, 2007, 71(1):57-66.
    [39]
    Standford G, Smith S. Nitrogen mineralization potentials of soils[J]. Soil Science Society of America Journal,1972,36(3):465-472.
    [40]
    唐树梅,漆智平.土壤水含量与氮矿化的关系[J]. 热带作物研究, 1997(4):54-60.
    [41]
    于一.分解底物质量对森林土壤氮矿化动态的调控作用[D].北京:北京林业大学, 2016..
    [42]
    Yannikos N, Leinweber P, Helgason B L, et al. Impact of populus trees on the composition of organic matter and the soil microbial community in Orthic Gray Luvisols in Saskatchewan (Canada)[J]. Soil Biology & Biochemistry,2014,70(2):5-11.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1392) PDF downloads(182) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return