• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 39 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
CHEN Jun, CHI Changfeng, XU Dongsheng, LIANG Feng. Application of GPR scattering matrix to estimating azimuths of underground pipelines[J]. CARSOLOGICA SINICA, 2020, 39(1): 101-109. doi: 10.11932/karst20200105
Citation: CHEN Jun, CHI Changfeng, XU Dongsheng, LIANG Feng. Application of GPR scattering matrix to estimating azimuths of underground pipelines[J]. CARSOLOGICA SINICA, 2020, 39(1): 101-109. doi: 10.11932/karst20200105

Application of GPR scattering matrix to estimating azimuths of underground pipelines

doi: 10.11932/karst20200105
  • Publish Date: 2020-02-25
  • This paper analyzes the properties of the scattering matrix S related to the incidence and scattering of ground penetrating radar and electromagnetic field. The four elements in the scattering matrix provide information corresponding to different polarization directions of the incident wave field. Based on this, the Alford rotates of scattering matrix S is used. to estimate the azimuth of the elongated target. Due to low amplitude and noise, the estimation of the angle is actually an unstable process. Therefore, the use of norm as a tool for screening the optimal amplitude is chosen to make the estimation of the angle more accurate and stable. The method is tested by using the simulation data obtained from the three-dimensional model of the metal tube buried in the uniform half space. When selecting the appropriate amplitude, the Frobenius norm ‖S‖F≥0.1?‖S‖F(max) is determined. The results show that the method of estimating the azimuth of the underground pipeline is effective.

     

  • loading
  • [1]
    Davis J L, Annan, A P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy[J]. Geophysical prospecting, 1989, 37(5): 531-551.
    [2]
    Van Gestel J P, Stoffa P L. Application of Alford rotation to ground-penetrating radar data[J]. Geophysics, 2001, 66(6): 1781-1792.
    [3]
    Radzevicius S J, Daniels J J. Ground penetrating radar polarization and scattering from cylinders[J]. Journal of Applied Geophysics, 2000, 45(2): 111-125.
    [4]
    徐建东,陈超纲.探地雷达收发天线极化方向变化对其电磁波响应的影响[J]. 公路工程, 2007(6): 137-140.
    [5]
    李丽丽,冯晅,鹿琪,等.极化步频探地雷达系统初步研究[J]. 吉林大学学报(地球科学版), 2008, 38(S1): 150-152.
    [6]
    Tsoflias G P, Perll C, Baker M, et al. Cross-polarized GPR imaging of fracture flow channeling[J]. Journal of Earth Science, 2015, 26(6): 776-784.
    [7]
    梁文婧,冯晅,刘财,等. 多输入多输出极化步进频率探地雷达硬件系统开发[J]. 吉林大学学报(地球科学版), 2018, 48(02): 483-490.
    [8]
    Sassen D S, Everett M E. 3D polarimetric GPR coherency attributes and full-waveform inversion of transmission data for characterizing fractured rock[J]. Geophysics, 2009, 74(3): J23-J34.
    [9]
    Daniels J J, Wielopolski L, Radzevicius S, et al. 3D GPR polarization analysis for imaging complex objects[C]//Symposium on the Application of Geophysics to Engineering and Environmental Problems 2003. Society of Exploration Geophysicists, 2003: 585-597.
    [10]
    冯晅, 邹立龙, 刘财, 等. 全极化探地雷达正演模拟[J]. 地球物理学报, 2011, 54(2): 349-357.
    [11]
    Villela A, Romo J M. Invariant properties and rotation transformations of the GPR scattering matrix[J]. Journal of Applied Geophysics, 2013, 90: 71-81.
    [12]
    Chen C C, Higgins M B, O'Neill K, et al. Ultrawide-bandwidth fully-polarimetric ground penetrating radar classification of subsurface unexploded ordnance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(6): 1221-1230.
    [13]
    Sun K, O'Neill K, Chen C C, et al. Highly contaminated UXO sites: combination of GPR and EMI for discrimination of clustered scatterers[C]//Symposium on the Application of Geophysics to Engineering and Environmental Problems 2005. Society of Exploration Geophysicists, 2005: 1156-1165.
    [14]
    Yu Y, Chen C C, Feng X, et al. Modified Entropy-Based Fully Polarimetric Target Classification Method for Ground Penetrating Radars (GPR)[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(10): 4304-4312.
    [15]
    冯晅, 梁帅帅, 恩和得力海, 等. 全极化探地雷达地下管道分类识别技术[J].吉林大学学报(地球科学版), 2018, 48(2): 364-372.
    [16]
    方建立, 应松, 贾进. 地质雷达在公路隧道超前地质预报中的应用[J]. 中国岩溶, 2005,24(2): 160-163.
    [17]
    李瑜, 朱平, 雷明堂, 等. 岩溶地面塌陷监测技术与方法[J].中国岩溶, 2005,24(2): 103-108.
    [18]
    张辉旭, 王小烈, 王红才, 等.北京千灵山生态修复边坡稳定性研究[J]. 中国岩溶, 2013, 32(4): 404-410.
    [19]
    李俊杰, 朱红雷, 赵国军, 等. 地质雷达电磁干扰分析及在隧洞岩溶探测中的应用[J]. 中国岩溶, 2018, 37(2): 286-293.
    [20]
    贾龙, 蒙彦, 潘宗源,等. 钻孔雷达反射成像在岩溶发育场地探测中的应用[J]. 中国岩溶, 2019, 38(1): 124-129.
    [21]
    Alford R M. Shear data in the presence of azimuthal anisotropy: Dilley, Texas[M]//SEG Technical Program Expanded Abstracts 1986. Society of Exploration Geophysicists, 1986: 476-479.
    [22]
    Thomsen L. Reflection seismology over azimuthally anisotropic media[J]. Geophysics, 1988, 53(3): 304-313.
    [23]
    Warren C, Giannopoulos A, Giannakis I. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209: 163-170.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1864) PDF downloads(426) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return