• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 39 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
LIU Haisheng, ZHOU Xun, ZHANG Yuqi, HAI kuo, YU Mingxiao, TAN Mengru, SHANG Ziqi. A brief review on the factors affecting deposition of travertines in hot springs[J]. CARSOLOGICA SINICA, 2020, 39(1): 11-16. doi: 10.11932/karst20200101
Citation: LIU Haisheng, ZHOU Xun, ZHANG Yuqi, HAI kuo, YU Mingxiao, TAN Mengru, SHANG Ziqi. A brief review on the factors affecting deposition of travertines in hot springs[J]. CARSOLOGICA SINICA, 2020, 39(1): 11-16. doi: 10.11932/karst20200101

A brief review on the factors affecting deposition of travertines in hot springs

doi: 10.11932/karst20200101
  • Publish Date: 2020-02-25
  • Travertines or tufas are non-marine carbonate precipitates around springs, rivers, lakes and caves, a manifestation of material migration in water cycles on lands. Studying the formation of travertines is helpful to understand the material migration regularity in local hydrologic circulation processes and indirectly examine the conditions of paleo-climate and paleo-hydrogeology. There are various travertines deposits near some of the hot springs. This paper presents a brief review on the formation of travertines from hot springs and the main factors controlling the deposition of travertinesand their interrelation. Research suggests that hydrochemical conditions are the material basis and necessary conditions for travertine deposition, which are the sufficient conditions for travertine deposition. Biological effects may accelerate the travertine deposition and the depositional environment may indirectly control the travertine deposition through changing hydrochemical or hydrodynamic conditions.

     

  • loading
  • [1]
    Viles H A, Goudie A S. Tufas, travertines and allied carbonate deposits[J]. Progress in Physical Geography, 1990, 14(1): 19-41.
    [2]
    Pentecost A. Travertines[M]. The Netherlands: Springer. 2005:1-445.
    [3]
    Andreo B, Martín-Martín M, Martín-Algarra A, et al. Hydrochemistry of spring water associated with travertines. Example of the Sierra de la Alfaguara (Granada, southern Spain)[J]. Surface Geoscience, 1999, 328(11): 745-750.
    [4]
    Ford T D, Pedley H M. A review of tufa and travertine deposits of the world[J]. Earth-Science Reviews, 1996, 41(3-4): 117-175.
    [5]
    Pentecost A. The Quaternary travertine deposits of Europe and Asia Minor[J]. Quaternary Science Reviews, 1995, 14(10): 1005-1028.
    [6]
    周训, 金晓媚, 梁四海, 等. 地下水科学专论[M]. 北京:地质出版社, 2010:78-80.
    [7]
    Pentecost A, Zhang Z H. A review of Chinese travertines[J]. Cave and Karst Science, 2001, 28: 15-28.
    [8]
    Dandurand J L, Gout R, Hoefs J, et al. Kinetically controlled variations of major components and carbon isotopes in a calcite-precipitating stream[J]. Chemical Geology, 1982, 36(3-4): 299-315.
    [9]
    Fouke B W, Farmer J D, Des Marais D J, et al. Depositional facies and aqueous-solid geochemistry of travertine -depositing hot springs (Angel Terrace, Mammoth hot springs, Yellowstone National Park, U.S.A.)[J]. Journal of Sedimentary Research, 2000, 70(3): 565-585.
    [10]
    Veysey J, Fouke B W, Kandianis M T, et al. Reconstruction of water temperature, pH, and flux of ancient hot springs from travertine depositional facies[J]. Journal of Sedimentary Research, 2008, 78(1-2): 69-76.
    [11]
    Kawai T, Kano A, Hori M. Geochemical and hydrological controls on biannual lamination of tufa deposits[J]. Sedimentary Geology, 2009, 213(1-2): 41-50.
    [12]
    Zentmyer R, Myrow P M, Newell D L. Travertine deposits from along the South Tibetan Fault System near Nyalam, Tibet[J]. Geological Magazine, 2008, 145(6): 753-765.
    [13]
    Dilsiz C. Conceptual hydrodynamic model of the Pamukkale hydrothermal field, southwestern Turkey, based on hydrochemical and isotopic data. Hydrogeology Journal, 2006, 14(4): 562-572.
    [14]
    沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]。北京:地质出版社, 1993:5-15.
    [15]
    Lorah M M, Herman J S. The chemical evolution of a travertine-depositing stream: Geochemical processes and mass transfer reactions[J]. Water Resources Research, 1988, 24(9): 1541-1552.
    [16]
    Dilsiz C, Marques J M, Carreira P M M. The impact of hydrological changes on travertine deposits related to thermal springs in the Pamukkale area (SW Turkey)[J]. Environmental Geology, 2004, 45(6): 808-817.
    [17]
    Kele S, Demény A, Siklósy Z, et al. Chemical and stable isotope composition of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary: Depositional facies and non-equilibrium fractionation[J]. Sedimentary Geology, 2008, 211(3): 53-72.
    [18]
    Acikel S, Ekmekci M. Hydrochemical characterization of Pamukkale travertines, Denizli, Turkey, for remediative measures[J]. Environmental Earth Sciences, 2016, 75(22): 1456.
    [19]
    Kele S, ?zkul M, Fórizs I, et al. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation[J]. Sedimentary Geology, 2011, 238(1): 191-212.
    [20]
    Wang X C, Zhou X, Zhao J B, et al. Hydrochemical evolution and reaction simulation of travertine deposition of the Lianchangping hot springs in Yunnan, China[J]. Quaternary International, 2015, 374:62-75.
    [21]
    Liu Y P, Zhou X, Deng Z J, et al. Hydrochemical characteristics and genesis analysis of the Jifei hot spring in Yunnan, southwestern China[J]. Geothermics, 2015, 53: 38-45.
    [22]
    Liu Z H, Zhang M, Li Q, et al. Hydrochemicaland isotope characteristics of spring water and travertine in the Baishuitai area (SW China) and their meaning for paleo-environmental reconstruction[J]. Environmental Geology, 2003, 44(6): 698-704.
    [23]
    Dreybrodt W, Buhmann D. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion[J]. Chemical Geology, 1991, 90(1-2): 107-122.
    [24]
    程星. 薄水效应初论[J]. 中国岩溶, 1994, 13(3): 207-213.
    [25]
    程星. 边石坝结构及其水动力条件研究[J]. 中国岩溶, 1999, 18(2): 135-143.
    [26]
    刘再华, 袁道先, Dreybrodt W, 等. 四川黄龙钙华的形成[J]. 中国岩溶, 1993, 12(3): 4-10.
    [27]
    Liu Z H, Svensson U, Dreybrodt W, et al. Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: Field measurements and theoretical prediction of deposition rates[J]. Geochimica and Cosmochimica Acta, 1995, 59(15): 3087-3097.
    [28]
    刘再华, 袁道先, 何师意, 等. 四川黄龙沟景区钙华的起源和形成机理研究[J]. 地球化学, 2003, 32(1): 1-11.
    [29]
    章典. 洞穴碳酸钙沉积的水运动条件[J]. 中国岩溶, 1983, 2(1): 33-41.
    [30]
    张英骏, 莫仲达. 黄果树瀑布成因初探[J]. 地理学报, 1982, 37(3): 303-317.
    [31]
    祝安. 河成石灰华成因:掺气效应研究[J]. 贵州师范大学学报(自然科学版), 1994, 12(1): 33-40.
    [32]
    张英骏, 程星, 祝安. 石灰华沉积机制的实验研究[J]. 中国岩溶, 1994, 13(3): 197-205.
    [33]
    杨妍妍. 广西博白温罗温泉形成演化与钙华沉积机制研究[D].北京:中国地质大学(北京), 2006.
    [34]
    Primc-Habdija B, Habdija I, An P M. Tufa deposition and periphyton overgrowth as factors affecting the ciliate community on travertine barriers in different current velocity conditions[J]. Hydrobiologia, 2001, 457(1-3): 87-96.
    [35]
    Pentecost A, Zhang Z H. Bryophytes from some travertine-depositing sites in France and the UK: relationships with climate and water chemistry[J]. Journal of Bryology, 2002, 24: 233-241.
    [36]
    Pentecost A, Zhang Z H. Response of bryophytes to exposure and water availability on some European travertines[J]. Journal of Bryology, 2006, 28: 21-26.
    [37]
    张朝晖, Pentecost A. 英国钙华苔藓植物区系特征及其主要钙华沉积类型[J]. 中国岩溶, 2002, 21(1): 38-45.
    [38]
    田友萍, 何复胜. 石灰华的生物成因研究:以四川九寨沟和贵州黄果树等地石灰华为例[J]. 中国岩溶, 1998, 17(1): 49-56.
    [39]
    Pentecost A, Zhang Z H. The travertine flora of Juizhaigou and Munigou, China, and its relationship with calcium carbonate deposition[J]. Cave and Karst Science, 2000, 27(2): 71-78.
    [40]
    Pentecost A, Zhang Z H. New and noteworthy list of bryophytes from active travertine sites of Guizhou and Sichuan[J], S.W. China. Journal of Bryology, 2000, 22(1): 66-68
    [41]
    刘再华, 李强, 孙海龙, 等. 云南白水台钙华水池中水化学日变化及其生物控制的发现[J]. 水文地质工程地质, 2005, 32(6):10-15.
    [42]
    辜寄蓉, 范晓, 范立学. 黄龙钙华景观影响因素分析[J]. 安徽农业科学, 2007, 35(32): 10319-10322.
    [43]
    郭云, 支崇远, 赵宇中, 等. 硅藻对地表石灰华沉积的生物作用及其意义[J]. 上海地质, 2007, 28(1): 21-24.
    [44]
    Pedley M, Andrews J, Ordonez S, et al. Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britain[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1996, 121(3-4): 239-257.
    [45]
    中国科学院地质研究所岩溶研究组[M]. 中国岩溶研究. 北京:科学出版社, 1979:37-40.
    [46]
    Merz-Prei? M, Riding R. Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes[J]. Sedimentary Geology, 1999, 126(1): 103-124.
    [47]
    Hancock P L, Chalmers R M L, Altunel E, et al. Travitonics: using travertines in active fault studies[J]. Journal of Structural Geology, 1999, 21(8): 903-916.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1704) PDF downloads(561) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return