Citation: | LIU Haisheng, ZHOU Xun, ZHANG Yuqi, HAI kuo, YU Mingxiao, TAN Mengru, SHANG Ziqi. A brief review on the factors affecting deposition of travertines in hot springs[J]. CARSOLOGICA SINICA, 2020, 39(1): 11-16. doi: 10.11932/karst20200101 |
[1] |
Viles H A, Goudie A S. Tufas, travertines and allied carbonate deposits[J]. Progress in Physical Geography, 1990, 14(1): 19-41.
|
[2] |
Pentecost A. Travertines[M]. The Netherlands: Springer. 2005:1-445.
|
[3] |
Andreo B, Martín-Martín M, Martín-Algarra A, et al. Hydrochemistry of spring water associated with travertines. Example of the Sierra de la Alfaguara (Granada, southern Spain)[J]. Surface Geoscience, 1999, 328(11): 745-750.
|
[4] |
Ford T D, Pedley H M. A review of tufa and travertine deposits of the world[J]. Earth-Science Reviews, 1996, 41(3-4): 117-175.
|
[5] |
Pentecost A. The Quaternary travertine deposits of Europe and Asia Minor[J]. Quaternary Science Reviews, 1995, 14(10): 1005-1028.
|
[6] |
周训, 金晓媚, 梁四海, 等. 地下水科学专论[M]. 北京:地质出版社, 2010:78-80.
|
[7] |
Pentecost A, Zhang Z H. A review of Chinese travertines[J]. Cave and Karst Science, 2001, 28: 15-28.
|
[8] |
Dandurand J L, Gout R, Hoefs J, et al. Kinetically controlled variations of major components and carbon isotopes in a calcite-precipitating stream[J]. Chemical Geology, 1982, 36(3-4): 299-315.
|
[9] |
Fouke B W, Farmer J D, Des Marais D J, et al. Depositional facies and aqueous-solid geochemistry of travertine -depositing hot springs (Angel Terrace, Mammoth hot springs, Yellowstone National Park, U.S.A.)[J]. Journal of Sedimentary Research, 2000, 70(3): 565-585.
|
[10] |
Veysey J, Fouke B W, Kandianis M T, et al. Reconstruction of water temperature, pH, and flux of ancient hot springs from travertine depositional facies[J]. Journal of Sedimentary Research, 2008, 78(1-2): 69-76.
|
[11] |
Kawai T, Kano A, Hori M. Geochemical and hydrological controls on biannual lamination of tufa deposits[J]. Sedimentary Geology, 2009, 213(1-2): 41-50.
|
[12] |
Zentmyer R, Myrow P M, Newell D L. Travertine deposits from along the South Tibetan Fault System near Nyalam, Tibet[J]. Geological Magazine, 2008, 145(6): 753-765.
|
[13] |
Dilsiz C. Conceptual hydrodynamic model of the Pamukkale hydrothermal field, southwestern Turkey, based on hydrochemical and isotopic data. Hydrogeology Journal, 2006, 14(4): 562-572.
|
[14] |
沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]。北京:地质出版社, 1993:5-15.
|
[15] |
Lorah M M, Herman J S. The chemical evolution of a travertine-depositing stream: Geochemical processes and mass transfer reactions[J]. Water Resources Research, 1988, 24(9): 1541-1552.
|
[16] |
Dilsiz C, Marques J M, Carreira P M M. The impact of hydrological changes on travertine deposits related to thermal springs in the Pamukkale area (SW Turkey)[J]. Environmental Geology, 2004, 45(6): 808-817.
|
[17] |
Kele S, Demény A, Siklósy Z, et al. Chemical and stable isotope composition of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary: Depositional facies and non-equilibrium fractionation[J]. Sedimentary Geology, 2008, 211(3): 53-72.
|
[18] |
Acikel S, Ekmekci M. Hydrochemical characterization of Pamukkale travertines, Denizli, Turkey, for remediative measures[J]. Environmental Earth Sciences, 2016, 75(22): 1456.
|
[19] |
Kele S, ?zkul M, Fórizs I, et al. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation[J]. Sedimentary Geology, 2011, 238(1): 191-212.
|
[20] |
Wang X C, Zhou X, Zhao J B, et al. Hydrochemical evolution and reaction simulation of travertine deposition of the Lianchangping hot springs in Yunnan, China[J]. Quaternary International, 2015, 374:62-75.
|
[21] |
Liu Y P, Zhou X, Deng Z J, et al. Hydrochemical characteristics and genesis analysis of the Jifei hot spring in Yunnan, southwestern China[J]. Geothermics, 2015, 53: 38-45.
|
[22] |
Liu Z H, Zhang M, Li Q, et al. Hydrochemicaland isotope characteristics of spring water and travertine in the Baishuitai area (SW China) and their meaning for paleo-environmental reconstruction[J]. Environmental Geology, 2003, 44(6): 698-704.
|
[23] |
Dreybrodt W, Buhmann D. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion[J]. Chemical Geology, 1991, 90(1-2): 107-122.
|
[24] |
程星. 薄水效应初论[J]. 中国岩溶, 1994, 13(3): 207-213.
|
[25] |
程星. 边石坝结构及其水动力条件研究[J]. 中国岩溶, 1999, 18(2): 135-143.
|
[26] |
刘再华, 袁道先, Dreybrodt W, 等. 四川黄龙钙华的形成[J]. 中国岩溶, 1993, 12(3): 4-10.
|
[27] |
Liu Z H, Svensson U, Dreybrodt W, et al. Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: Field measurements and theoretical prediction of deposition rates[J]. Geochimica and Cosmochimica Acta, 1995, 59(15): 3087-3097.
|
[28] |
刘再华, 袁道先, 何师意, 等. 四川黄龙沟景区钙华的起源和形成机理研究[J]. 地球化学, 2003, 32(1): 1-11.
|
[29] |
章典. 洞穴碳酸钙沉积的水运动条件[J]. 中国岩溶, 1983, 2(1): 33-41.
|
[30] |
张英骏, 莫仲达. 黄果树瀑布成因初探[J]. 地理学报, 1982, 37(3): 303-317.
|
[31] |
祝安. 河成石灰华成因:掺气效应研究[J]. 贵州师范大学学报(自然科学版), 1994, 12(1): 33-40.
|
[32] |
张英骏, 程星, 祝安. 石灰华沉积机制的实验研究[J]. 中国岩溶, 1994, 13(3): 197-205.
|
[33] |
杨妍妍. 广西博白温罗温泉形成演化与钙华沉积机制研究[D].北京:中国地质大学(北京), 2006.
|
[34] |
Primc-Habdija B, Habdija I, An P M. Tufa deposition and periphyton overgrowth as factors affecting the ciliate community on travertine barriers in different current velocity conditions[J]. Hydrobiologia, 2001, 457(1-3): 87-96.
|
[35] |
Pentecost A, Zhang Z H. Bryophytes from some travertine-depositing sites in France and the UK: relationships with climate and water chemistry[J]. Journal of Bryology, 2002, 24: 233-241.
|
[36] |
Pentecost A, Zhang Z H. Response of bryophytes to exposure and water availability on some European travertines[J]. Journal of Bryology, 2006, 28: 21-26.
|
[37] |
张朝晖, Pentecost A. 英国钙华苔藓植物区系特征及其主要钙华沉积类型[J]. 中国岩溶, 2002, 21(1): 38-45.
|
[38] |
田友萍, 何复胜. 石灰华的生物成因研究:以四川九寨沟和贵州黄果树等地石灰华为例[J]. 中国岩溶, 1998, 17(1): 49-56.
|
[39] |
Pentecost A, Zhang Z H. The travertine flora of Juizhaigou and Munigou, China, and its relationship with calcium carbonate deposition[J]. Cave and Karst Science, 2000, 27(2): 71-78.
|
[40] |
Pentecost A, Zhang Z H. New and noteworthy list of bryophytes from active travertine sites of Guizhou and Sichuan[J], S.W. China. Journal of Bryology, 2000, 22(1): 66-68
|
[41] |
刘再华, 李强, 孙海龙, 等. 云南白水台钙华水池中水化学日变化及其生物控制的发现[J]. 水文地质工程地质, 2005, 32(6):10-15.
|
[42] |
辜寄蓉, 范晓, 范立学. 黄龙钙华景观影响因素分析[J]. 安徽农业科学, 2007, 35(32): 10319-10322.
|
[43] |
郭云, 支崇远, 赵宇中, 等. 硅藻对地表石灰华沉积的生物作用及其意义[J]. 上海地质, 2007, 28(1): 21-24.
|
[44] |
Pedley M, Andrews J, Ordonez S, et al. Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britain[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1996, 121(3-4): 239-257.
|
[45] |
中国科学院地质研究所岩溶研究组[M]. 中国岩溶研究. 北京:科学出版社, 1979:37-40.
|
[46] |
Merz-Prei? M, Riding R. Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes[J]. Sedimentary Geology, 1999, 126(1): 103-124.
|
[47] |
Hancock P L, Chalmers R M L, Altunel E, et al. Travitonics: using travertines in active fault studies[J]. Journal of Structural Geology, 1999, 21(8): 903-916.
|