• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 39 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
SU Chuntian, YANG Yang, BA Junjie, LUO Fei, LI Xiaopan, ZHAO Guangshuai. Dynamic characteristics and genesis of strontium-rich groundwater in Xintian county, Hunan Province[J]. CARSOLOGICA SINICA, 2020, 39(1): 24-33. doi: 10.11932/karst2019y34
Citation: SU Chuntian, YANG Yang, BA Junjie, LUO Fei, LI Xiaopan, ZHAO Guangshuai. Dynamic characteristics and genesis of strontium-rich groundwater in Xintian county, Hunan Province[J]. CARSOLOGICA SINICA, 2020, 39(1): 24-33. doi: 10.11932/karst2019y34

Dynamic characteristics and genesis of strontium-rich groundwater in Xintian county, Hunan Province

doi: 10.11932/karst2019y34
  • Publish Date: 2020-02-25
  • In order to understand the dynamic characteristics of Sr-rich groundwater in Xintian county, Hunan Province, two sites were sampled and analyzed regularly for one year(January to December 2017). The results show that the content of Sr2+ in decline spring S045 remains stable in wet , normal and dry seasons with values of 0.27 mg?kg-1, 0.25 mg?kg-1 and 0.26 mg?kg-1, respectively. The hydrogeological characteristics determine that the dilution effect of rainfall on Sr2+ content in the decline spring S045 is limited, which is the main reason for the relative stability of Sr2+ content in this spring throughout the year. The Sr2+ content in the ZK1 well decreases in wet, normal and dry seasons with values of 0.73 mg?kg-1, 0.68 mg?kg-1 and 0.52 mg?kg-1, respectively. The variation of water level caused by the different water circulation conditions leads to different mixing ratios of high strontium subsurface water and low strontium shallow subsurface water, which is the reason why strontium content in the ZK1 well is positively correlated with atmospheric rainfall. Analysis using the ion ratio method shows that the γ(Na?) /γ(Cl?) in the decline spring S045 is 0.78, 0.44 and 0.49, γ(HCO〖_3^-〗+SO〖_4^(2-)〗) /γ(Ca2++Mg2+) is 0.99, 0.98 and 0.96, γ(Na?) /γ(Cl?) in ZK1 well is 75.24, 71.34 and 126.08, and γ(HCO〖_3^-〗+SO〖_4^(2-)〗) /γ(Ca2++Mg2+) is 37.13, 30.54 and 44.89 in wet, normal and dry seasons, respectively. They indicate that the groundwater experienced cation exchange in the ZK1 well. The average values of the γ(Cl?) /γ(Ca2?) coefficients in the decline spring S045 are 1.09×10-2 in wet season, 1.06×10-2 in normal season and 1.05×10-2 in dry season, respectively. The average values of the γ(Cl?) /γ(Ca2?) coefficients in ZK1 well are 1.29 in wet season, 0.98 in normal season and 0.94 in dry season, respectively. The γ(Cl?) /γ(Ca2?) in the ZK1 well is significantly higher than that in the decline spring S045, indicating that the hydrodynamic condition of the ZK1 well is weaker than that of the decline spring S045, and it is an important factor for the higher Sr2+ content in the ZK1 well than that in the decline spring S045.

     

  • loading
  • [1]
    胡进武,王增银,周炼,等.岩溶水锶元素水文地球化学特征[J].中国岩溶,2004,23(1):37-42.
    [2]
    Nielsen S P.The biological role of strontium[J].Bone,2004(35):583-588.
    [3]
    张俊德.河北饮用天然矿泉水基本特征与形成机理初步探讨[J].华北地质矿产杂志,1995,10(4):430-436.
    [4]
    范伟,杨悦锁,冶雪艳,等.青肯泡地区地下水中锶富集的水文地球化学环境特征及成因分析[J].吉林大学学报(自然科学版),2010,40(2):349-367.
    [5]
    刘庆宣,王贵玲,张发旺.矿泉水中微量元素锶富集的地球化学环境[J].水文地质工程地质,2004,31(6):19-23.
    [6]
    常明华.和村-孙庄盆地富锶矿泉水赋存地质条件[J].中国煤炭地质,2008,20(2):24-26.
    [7]
    赵振,陈惠娟,罗银飞,等.青海玉树热水沟天然矿泉水形成条件及水质分析[J].地下水,2013,35(6):4-6.
    [8]
    苏春利,李义连,王焰新.深圳市东湖矿泉水形成机理探讨[J].地质科技情报,2003,22(4):85-90.
    [9]
    夏日元,蒋忠诚,邹胜章,等.岩溶地区水文地质环境地质综合调查工程进展[J].中国地质调查,2017,4(1):1-10.
    [10]
    祁晓凡,蒋忠诚,邓艳.典型表层岩溶泉锶、钡水文地球化学特征[J].人民黄河,2009,31(4):63-64,66.
    [11]
    康志强,熊志斌,李清艳,等.岩溶地下河流域水循环方式的降水效应[J].地球与环境,2011,39(1):26-31.
    [12]
    王涛.西南岩溶山区地下河系统水化学与水循环[D].武汉:中国地质大学(武汉),2006.
    [13]
    苏春田,黄晨晖,邹胜章,等.新田县地下水锶富集环境及来源分析[J].中国岩溶,2017,36(5):678-683.
    [14]
    徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002:30-35.
    [15]
    钱程,武雄.盐池内流区地下水水化学特征及其形成作用[J].干旱区资源与环境,2016,30(3):169-175.
    [16]
    胡云虎.皖北地下水源地水环境地球化学特征研究[D].淮南:安徽理工大学,2015.
    [17]
    沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1999.
    [18]
    姜凌.干旱区绿洲地下水水化学成分形成及演化机制研究[D].西安:长安大学,2009.
    [19]
    李巧.准噶尔盆地平原区地下水水质时空演化研究[D].乌鲁木齐:新疆农业大学,2014.
    [20]
    Chen Lu,Wang Guangcai,Hu Fusheng,et al.Groundwater hydrochemistry and isotope geochemistry in the Turpan Basin,northwestern China[J].Journal of Arid Land,2014,6(4):378-388.
    [21]
    张祖新,廖桂英,喻畅.带跌坎的消力池充水过程水力特性的试验研究[J].水电能源科学,2010,28(10):49-52.
    [22]
    苏春田,聂发运,邹胜章,等.湖南新田富锶地下水水化学特征与成因分析[J].现代地质,2018,32(3):554-564.
    [23]
    袁道先,蒋勇军,沈立成,等.现代岩溶学[M].北京:科学出版社,2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1943) PDF downloads(510) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return