• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 38 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
REN Jiaojiao, ZHOU Yunchao, LIU Bing, ZHANG Chunlai. Study on aggregate formation mechanism of soil in limestone[J]. CARSOLOGICA SINICA, 2019, 38(5): 722-728. doi: 10.11932/karst2019y17
Citation: REN Jiaojiao, ZHOU Yunchao, LIU Bing, ZHANG Chunlai. Study on aggregate formation mechanism of soil in limestone[J]. CARSOLOGICA SINICA, 2019, 38(5): 722-728. doi: 10.11932/karst2019y17

Study on aggregate formation mechanism of soil in limestone

doi: 10.11932/karst2019y17
  • Publish Date: 2019-10-25
  • Soil aggregate is the most basic structural unit of soil. To understand the formation mechanism of soil aggregate developed from limestone in karst areas, soil samples were collected from Huaxi District of Guiyang City for analysis. Using dry and wet sieving methods, the grading of aggregate particles for the soil samples were examined. The changes of the aggregate particle fractions and the ion content for calcium, magnesium, iron and aluminum ions of the split organic matter with these ions were compared. The results show that the soil aggregate is formed by fine particles generated by the combination of organic matter with calcium, magnesium, iron and aluminum ions, which furtherly forms bigger aggregate with larger particle size, finally develop to complete aggregate texture of bonded soil grain or other aggregate by the molecular force. The major cementing material of aggregate is the combination organic matter and calcium ion, followed by magnesium and iron ion. The bonding between organic matter and aluminum ions is not significant, which is because that limestone is dominated by calcium carbonate. Consequently, soil in the study area has relatively high content of soil aggregate with big grain size and higher water stability, thus its capability of erosion resistance is strong.

     

  • loading
  • [1]
    卢金伟. 土壤团聚体水稳定性及其与土壤可蚀性之间关系研究[D]. 杨凌:西北农林科技大学,2002.
    [2]
    李晓鹏. 土壤侵蚀的成因、危害及治理措施[J]. 北京农业,2014(21): 248.
    [3]
    华忠光. 红壤团聚体力稳性特征及其对土壤溅蚀的影响[D]. 武汉:华中农业大学, 2012.
    [4]
    黄昌勇. 面向21世纪课程教材 土壤学[M]. 中国农业出版社,2000.
    [5]
    罗美,周运超. 白云岩发育形成土壤团聚体的机制[J]. 贵州农业科学, 2014,42(3): 79-82.
    [6]
    杨剑波. 贵州喀斯特生态环境对石灰土物理性质的影响研究[D]. 贵阳:贵州大学, 2009.
    [7]
    郑永春,王世杰. 贵州山区石灰土侵蚀及石漠化的地质原因分析[J]. 长江流域资源与环境, 2002(5): 461-465.
    [8]
    尚应妮,胡斐南,赵世伟,等. 不同胶结物质对黄绵土团聚体形成的影响[J]. 水土保持学报, 2017,31:(2): 204-208.
    [9]
    陈山. 不同利用方式土壤团聚体稳定性及其与有机质和铁铝氧化物的关系[D]. 武汉:华中农业大学, 2012.
    [10]
    张治伟,傅瓦利,张洪,等. 石灰岩土壤结构稳定性及影响因素研究[J]. 水土保持学报,2009,23(1): 164-168.
    [11]
    文倩,关欣. 土壤团聚体形成的研究进展[J]. 干旱区研究, 2004, 21(4): 434-438.
    [12]
    李娟,廖洪凯,龙健,等. 喀斯特山区土地利用对土壤团聚体有机碳和活性有机碳特征的影响[J]. 生态学报,2013, 33(7): 2147-2156.
    [13]
    俞月凤,卢凌霄,杜虎,等. 不同类型森林石灰土的团聚体组成及其有机碳分布特征[J]. 西北植物学报, 2013,33(5): 1011-1019.
    [14]
    胡乐宁,苏以荣,何寻阳. 桂西北喀斯特典型土壤的大团聚体分级特征研究[J]. 广西师范大学学报(自然科学版),2013,31(3): 213-219.
    [15]
    肖复明,范少辉,汪思龙,等. 毛竹林地土壤团聚体稳定性及其对碳贮量影响研究[J]. 水土保持学报,2008, 22(2): 131-134, 181.
    [16]
    黎宏祥. 喀斯特地区不同林分土壤团聚体稳定性及其有机碳特征[D]. 北京:北京林业大学,2016.
    [17]
    韩新生,马璠,郭永忠,等. 土地利用方式对表层土壤水稳性团聚体的影响[J]. 干旱区资源与环境, 2018,32(2): 114-120.
    [18]
    李鉴霖,江长胜,郝庆菊. 土地利用方式对缙云山土壤团聚体稳定性及其有机碳的影响[J]. 环境科学,2014,35(12): 4695-4704.
    [19]
    谭秋锦,宋同清,彭晚霞,等. 峡谷型喀斯特不同生态系统土壤团聚体稳定性及有机碳特征[J]. 应用生态学报, 2014,25(3): 671-678.
    [20]
    李阳兵,魏朝富,谢德体,等. 岩溶山区植被破坏前后土壤团聚体稳定性研究[J]. 中国农学通报,2005(10): 232-234.
    [21]
    赵洋毅,周运超,段旭. 黔中石灰岩喀斯特表层土壤结构性与土壤抗蚀抗冲性[J]. 水土保持研究, 2008(2): 18-21.
    [22]
    骆东奇,侯春霞,魏朝富,等. 紫色土团聚体抗蚀特征研究[J]. 水土保持学报, 2003(2): 20-23,27.
    [23]
    鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.
    [24]
    刘红艳,衣伟,刘淑芹,等. 土壤中多元素相态振荡和超声提取法对比[J]. 实验室研究与探索, 2013,32(2): 21-23.
    [25]
    梁成华. 地质与地貌学[M]. 北京:中国农业出版社, 2002.
    [26]
    Elliott E T, Coleman D C. Let the Soil Work for Us[J]. Ecological Bulletins. 1988(39): 23-32.
    [27]
    Six J, Elliott E T, Paustian K. Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy.[J]. Soil Science Society of America Journal. 2000, 64(3): 1042-1049.
    [28]
    Tisdall J M. Possible role of soil microorganisms in aggregation in soils[J]. Plant & Soil. 1994,159(1): 115-121.
    [29]
    王世杰,李阳兵,李瑞玲. 喀斯特石漠化的形成背景、演化与治理[J]. 第四纪研究, 2003(6): 657-666.
    [30]
    张信宝,王世杰,曹建华,等. 西南喀斯特山地水土流失特点及有关石漠化的几个科学问题[J]. 中国岩溶, 2010,29(3): 274-279.
    [31]
    周运超,罗美. 喀斯特小流域土壤厚度的影响因素[J]. 山地农业生物学报, 2017,36(3): 1-5.
    [32]
    罗美,周运超,王可可. 喀斯特树轮记录的土壤侵蚀历史研究(英文)[J]. Journal of Resources and Ecology, 2015,6(4): 257-262.
    [33]
    李德文,崔之久,刘耕年,等. 岩溶风化壳形成演化及其循环意义[J]. 中国岩溶, 2001,20(3): 17-22.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1740) PDF downloads(330) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return