• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 38 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
CHENG Xi, WAN Junwei, HUANG Kun, XIANG Lilei, HE Xinhui. Experimental study on the interference of fluorescent tracer[J]. CARSOLOGICA SINICA, 2019, 38(5): 795-803. doi: 10.11932/karst20190516
Citation: CHENG Xi, WAN Junwei, HUANG Kun, XIANG Lilei, HE Xinhui. Experimental study on the interference of fluorescent tracer[J]. CARSOLOGICA SINICA, 2019, 38(5): 795-803. doi: 10.11932/karst20190516

Experimental study on the interference of fluorescent tracer

doi: 10.11932/karst20190516
  • Publish Date: 2019-10-25
  • Uranine, Rhodamine and Tinopal are three common tracers used in groundwater tracer tests. As the emission wavelengths of these tracers overlap with each other, interference would occur when more than two kinds of tracers exist in groundwater, resulting in errors in tracer concentrations detected by fluorometer, and further leading to misjudgment of hydrogeological conditions and deviations in parameter calculation. Therefore, in multiple tracer tests, how to select tracers and how to eliminate the interference between tracers are important research issues to improve the application effects of tracer test, such as correctly understanding the hydrogeological conditions and accurately obtaining parameters. This work conducted a number of experiments to investigate the interference relationship among Uranine, Rhodamine and Tinopal in pure water under dark environments. During the experiments, only one kind of tracer was added into a self-designed flow circulation system to control the tracer concentrations in water, meanwhile changes of concentrations of other two kinds of tracers were also detected by fluorometer (GGUN-FL30). Firstly, the results indicate that Uranine has the best performance of anti-interference in laboratory systems, followed by Rhodamine, and Tinopal is most easily interfered by other tracers producing the false impression on increasing detected concentration which obeys a linear law. Moreover, when Rhodamine is used as a tracer, the concentration increment of Uranine and Tinopal changes linearly following the respective equations, ΔCU=0.052CR and ΔCT=0.012CR. When Uranine is used, the concentration increments of Rhodamine and Tinopal obey equations, ΔCR=0.507CU and ΔCT=0.323CU, respectively.This work also analyzed a field binary-tracer test data according to the above laws and then obtained more reasonable test results. The binary-tracer test was conducted in the Dishuiyan karst water system of the Houjia river basin in Xianfeng county, Enshi Prefecture, Hubei Province. During the test, Uranine and Tinopal were respectively put into ponors of two karst depressions at upstream, then both the tracers were detected by the fluorometer (GGUN-FL30) at the outlet of the Dishuiyan underground river. The phenomenon that double peaks appeared in the measured concentration duration curve of Tinopal is hard to explained from the karst development conditions, which may be caused by the interference of Uranine. Thus, the test results were modified by the linear interference law between Uranine and Tinopal obtained from aforementioned laboratory experiments, and then a single peak curve of Tinopal concentration was obtained. At last, it is considered that the development characteristics of karst pipelines analyzed by modified results are more reasonable, and the groundwater velocities calculated are more accurate.The laboratory and field experiments aforementioned suggest Rhodamine should be used together with Tinopal as tracers for field binary-tracer tests, which may produce less interference errors, or to use the linear equations proposed by indoor interference experiments among the tracers to calibrate the detected concentrations.

     

  • loading
  • [1]
    孙恭顺. 实用地下水连通试验方法[M]. 贵阳:贵州人民出版社, 1988.
    [2]
    张祯武, 杨胜强. 岩溶水示踪探测技术的新进展[J]. 工程勘察, 1999, 28(5):40-43.
    [3]
    汪进良, 姜光辉, 侯满福,等. 自动化监测电导率在盐示踪试验中的应用:以云南八宝水库盐示踪试验为例[J]. 地球学报, 2005, 26(4):83-86.
    [4]
    邬立, 万军伟, 陈刚,等. 宜万铁路野三关隧道“8.5”突水事故成因分析[J]. 中国岩溶, 2009, 28(2):212-218.
    [5]
    裴建国, 谢运球, 章程,等. 湘中溶蚀丘陵区示踪试验:以湖南新化为例[J]. 中国岩溶, 2000, 19(4):366-371.
    [6]
    易连兴, 夏日元, 唐建生,等. 地下水连通介质结构分析:以寨底地下河系统实验基地示踪试验为例[J]. 工程勘察, 2010, 38(11):38-41.
    [7]
    Pierre-Andre Schnegg , Costa R. Tracer tests made easier with field fluorometers[J]. Bulletin Dhydrogeologie, 2005, 20(5):1-2.
    [8]
    Goldscheider N, Meiman J, Pronk M, et al. Tracer tests in karst hydrogeology and speleology[J]. International Journal of Speleology, 2008, 37(1):27-40.
    [9]
    杨平恒, 罗鉴银, 彭稳,等. 在线技术在岩溶地下水示踪试验中的应用:以青木关地下河系统岩口落水洞至姜家泉段为例[J]. 中国岩溶, 2008, 27(3):215-220.
    [10]
    何师意, Michele, 章程,等. 高精度地下水示踪技术及其应用:以毛村地下河流域为例[J]. 地球学报, 2009, 30(5):673-678.
    [11]
    李择卫. 地下水示踪试验在水库岩溶渗漏分析中的应用[J]. 人民长江, 2013,44(s1):115-116.
    [12]
    张亮, 陈植华, 周宏,等. 典型岩溶泉水文地质条件的调查与分析:以香溪河流域白龙泉为例[J]. 水文地质工程地质, 2015, 42(2):31-37.
    [13]
    田清朝, 万军伟, 黄琨,等. 高家坪隧道岩溶水系统识别及涌水量预测[J]. 安全与环境工程, 2016, 23(5):13-19.
    [14]
    杨平恒, 袁道先, 蓝家程,等. 基于在线高分辨率监测和定量计算的岩溶地下水示踪试验[J]. 西南大学学报(自然科学版), 2013, 35(2):103-108.
    [15]
    于正良, 杨平恒, 谷海华,等. 基于在线高分辨率示踪技术的岩溶泉污染来源及含水介质特征分析:以重庆黔江区鱼泉坎为例[J]. 中国岩溶, 2014, 33(4):498-503.
    [16]
    杨福荣, 李耀周, 林义华,等. 在线示踪试验在隧道建设前期勘察中的应用研究:以重庆城开高速公路拟建旗杆山隧道为例[C]. 2017年全国工程地质学术年会论文集. 北京:科学出版社, 2017:421-427.
    [17]
    黄小琴, 万军伟, 黄琨,等. 湖北省座家岩水电站水库渗漏条件研究[C]. 2011年全国工程地质学术年会论文集. 北京:科学出版社, 2011:14-19.
    [18]
    徐尚全, 王鹏, 焦杰松,等. 高精度在线示踪技术在岩溶地下水文调查中的应用[J]. 工程勘察, 2013, 41(2):40-44.
    [19]
    王开然, 姜光辉, 郭芳,等. 桂林东区峰林平原岩溶地下水示踪试验与分析[J]. 现代地质, 2013, 27(2):454-459.
    [20]
    尹洪, 王晓青. 在线高分辨率示踪技术在重庆南山隧道水渗漏的应用研究[J]. 重庆建筑, 2013,12(7):16-18.
    [21]
    刘树林, 范泽英, 杨平恒,等. 基于在线高分辨率示踪试验的岩溶地下河管道特征分析:以重庆市彭水县岩窝坨至纸厂泉段地下河为例[J]. 西南大学学报(自然科学版), 2015, 37(10):125-130.
    [22]
    赵一, 李衍青, 覃星铭,等. 南洞地下河岩溶管道展布及结构特征的示踪试验解析[J]. 中国岩溶, 2017, 36(2):226-233.
    [23]
    王恒, 陈余道. 桂林寨底地下河系统弥散系数研究[J]. 地下水, 2013, 35(4):13-15.
    [24]
    陈雪彬, 周军, 蓝家程,等. 基于在线示踪技术的岩溶地下河流场反演与水文地质参数估算[J]. 中国岩溶, 2013, 32(2):148-152.
    [25]
    陈余道, 程亚平, 王恒,等. 岩溶地下河管道流和管道结构及参数的定量示踪:以桂林寨底地下河为例[J]. 水文地质工程地质, 2013, 40(5):11-15.
    [26]
    易连兴, 卢海平, 赵良杰,等. 鱼泉地下河示踪试验及回收强度法管道结构分析[J]. 工程勘察, 2015, 43(2):46-51.
    [27]
    赵良杰, 夏日元, 易连兴,等. 岩溶地下河浊度来源及对示踪试验影响的定量分析[J]. 地球学报, 2016, 37(2):241-246.
    [28]
    蔡五田, 戴爱德, 袁钢坤,等. 应用多种示踪剂研究岩溶泉系统的补给边界[J]. 中国岩溶, 1988,7(4):378.
    [29]
    刘兴云, 曾昭建. 地下水多元示踪试验在岩溶地区的应用[J]. 岩土工程技术, 2006, 20(2):17-20.
    [30]
    易连兴, 张之淦, 胡大可,等. 三元连通试验在岩溶渗漏研究中的应用[J]. 水文地质工程地质, 2006, 33(6):18-20.
    [31]
    Nguyet V, Goldscheider N. Tracer tests, hydrochemical and microbiological investigations as a basis for groundwater protection in a remote tropical mountainous karst area, Vietnam[J]. Hydrogeology Journal, 2006, 14(7):1147-1159.
    [32]
    申月芳, 柴海峰, 滑帅,等. 洋碰隧道岩溶涌水连通试验研究[J]. 铁道建筑, 2012,52(10):62-65.
    [33]
    张湘文, 王涛, 程胜高. 示踪试验在隧道涌水与断层水力联系调查中的应用:以江西萍乡钟家山为例[J]. 环境影响评价, 2015, 37(2):66-69.
    [34]
    曾莘茹, 姜光辉, 郭芳,等. 桂林甑皮岩洞穴遗址地下水示踪及污染来源分析[J]. 中国岩溶, 2016, 35(3):245-253.
    [35]
    於开炳, 徐蔓, 严竞雄,等. 地下水示踪试验在岩溶隧道勘察中的应用:以利万高速齐岳山隧道为例[J]. 工程勘察, 2017, 45(10):46-51.
    [36]
    黄芬, 尹伟璐, 胡晓农,等. 桂林毛村地下河流域雨季与旱季定量示踪分析[J]. 中国岩溶, 2017, 36(5):648-658.
    [37]
    吕全标, 胡晓农, 曹建华,等. 基于钻孔抽水试验和示踪试验的岩溶地区含水层结构研究[J]. 中国岩溶, 2017, 36(5):727-735.
    [38]
    Schnegg P-A , Flynn R. Online field fluorometers for hydrogeological tracer tests[C]. Isotope und Tracer in der Wasserforschung. Germany:Technische Universitat Bergakademie Freiberg, 2002:29-36.
    [39]
    栾崧, 曹建文. 揭秘“洞水突然变化”:探究地下水示踪试验[J]. 中国矿业, 2018, 27(2):304-305.
    [40]
    易连兴, 赵良杰, 卢海平,等. 两种常用染色剂管道及淤泥条件下示踪及对比:以丁旗地下河连通试验为例[J]. 中国岩溶, 2017,36(5):721-726.
    [41]
    Schnegg P A. A Computer Method for Separating Hard to Separate Dye Tracers[M]// Hydrogeological and Environmental Investigations in Karst Systems. Belin: Springer Berlin Heidelberg, 2015:123-130.
    [42]
    许金钩, 王尊本. 荧光分析法[M]. 北京:科学出版社, 2006.
    [43]
    李晓燕, 张晓辉. 现代仪器分析[M]. 北京:化学工业出版社, 2008.
    [44]
    沈永嘉, 李红斌. 荧光增白剂[M]. 北京:化学工业出版社, 2004.
    [45]
    崔兆瑞. 示踪剂:碱性玫瑰精测试技术研究[J]. 中国环境监测, 1990,6(2):47-49.
    [46]
    傅立磊. 富水复杂地层城市隧道地下水连通试验方法及其工程应用研究[D]. 北京:中国铁道科学研究院, 2011.
    [47]
    郑克勋. 地下水人工化学连通示踪理论及试验方法研究[D]. 南京:河海大学, 2007.
    [48]
    朱晓玲, 刘杰, 文红,等. 荧光增白剂检测技术研究进展[J]. 食品工业科技, 2014, 35(10):366-371.
    [49]
    Field M S. The QTRACER2 program for tracer-breakthrough curve analysis for karst aquifers and other hydrologic systems[M].America:United States Environ-mental Protection Agency, 2002.
    [50]
    Schnegg P A, Thueler L. Application of a multi-LED field fluorometer for simultaneous detection of hard to separate dye tracers and fluocapteurs[C]. XI Congreso Latino-Americano de Hidrogeologia, 2012:19-24.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1832) PDF downloads(334) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return