• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
WU Qiqiao, LI Jingrui, CAO Fei, LIANG Bin, ZHU Xiansheng, ZHANG Qingyu, DAN Yong. Characteristics of fault-karst carbonate reservoirs in the Shunbei No.1 well block, Tarim basin[J]. CARSOLOGICA SINICA, 2019, 38(3): 444-449. doi: 10.11932/karst20190313
Citation: WU Qiqiao, LI Jingrui, CAO Fei, LIANG Bin, ZHU Xiansheng, ZHANG Qingyu, DAN Yong. Characteristics of fault-karst carbonate reservoirs in the Shunbei No.1 well block, Tarim basin[J]. CARSOLOGICA SINICA, 2019, 38(3): 444-449. doi: 10.11932/karst20190313

Characteristics of fault-karst carbonate reservoirs in the Shunbei No.1 well block, Tarim basin

doi: 10.11932/karst20190313
  • Publish Date: 2019-06-25
  • With the deepening of exploration practice for ultra deep carbonate reservoirs in Tarim basin, a new type of karst reservoirs has been found in the peripheral slope area of the Tahe river. The Shunbei No.1well area is the main production area of the Sinopec Shunbei oilfield, which is a typical fault-karst reservoir. The area has undergone 4 stages of development, a quasi syngenetic karst process on the top surface of Yijianfang formation, bedding strata of the Lianglitage formation and the dissolution of the fractured reservoir, buried karst in the Silurian Santamu formation and the late Permian hydrothermal karst transformation of the late Hercynian. Among them, the control of the 80-120 m emptying leakage below the top surface of Yijianfang formation is the bedding fracture controlled reservoir karst period of the Lianglitage formation. At the same time, it is considered that the necessary conditions for the development of dissolving body reservoirs in the Shunbei No.1 well area is the large-scale strike-slip pull-apart fault in the development region, where the dissection reflectors in the pull-apart section extend over large distances in plane and downward to large depths, marking the high quality and high yield reservoirs; while those in the thrust section show a plywood shape with narrow transverse extension, representing a secondary reservoir space.

     

  • [1]
    罗群,姜振学,庞雄奇,等.断裂控藏机理与模式[M].北京:石油工业出版社,2007.
    [2]
    贾承造主编.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997:185-200.
    [3]
    Giwelli A, Esteban L, Delle Piane C, et al. 2016a. Fault reactivation in travertine and its impact on hydraulic transmissibility: laboratory experiments and mesoscale structures. Pet. Geosci.
    [4]
    Graham B, Antonellini M, Aydin A. Formation and growth of normal faults in carbonates within a compressive environment [J].Geology,2003,31(1):11-14.
    [5]
    鲁新便,胡文革,汪彦,等.塔河地区碳酸盐岩断溶体油藏特征与开发实践[J].石油与天然气地质,2015,36(3):347-355.
    [6]
    韩长城,林承焰,鲁新便,等.塔河奥陶系碳酸盐岩岩溶斜坡断控岩溶储层特征及形成机制[J].石油与天然气地质,2016,37(5):644-652.
    [7]
    袁道先.中国岩溶学[M].北京:地质出版社,1994:1-207.
    [8]
    夏日元,唐健生,罗伟权,等.油气田古岩溶与深岩溶研究新进展[J].中国岩溶, 2001, 20 (1):76.
    [9]
    李景瑞,梁彬,于红枫,等.中古8井区断裂于鹰山组岩溶储层成因关系[J].中国岩溶,2015,34(2):147-153.
    [10]
    周新源,吕修祥,杨海军,等.塔中北斜坡走滑断裂对碳酸盐岩油气差异富集的影响[J].石油学报,2013,34(4):628-637.
    [11]
    周文,李秀华,金文辉,等.塔河奥陶系油藏断裂对古岩溶的控制作用[J].岩石学报,2011,27(8):2339-2348.
    [12]
    黄成毅,邹胜章,潘文庆,等.古潮湿环境下碳酸盐岩缝洞型油气藏结构模式:以塔里木盆地奥陶系为例[J].中国岩溶,2006,25(3):250-255.
    [13]
    乔占峰,沈安江,邹伟宏,等.断裂控制的非暴露型大气水岩溶作用模式:以塔北英买2构造奥陶系碳酸盐岩储层为例[J].地质学报,2011,85(12):2070-2083.
    [14]
    何治亮,彭守涛,张涛.塔里木盆地塔河地区奥陶系储层形成的控制因素与复合-联合成因机制[J].石油与天然气地质,2010,31(6):743-752.
    [15]
    Fossen H R A. Structural geology [M]. Cambridge University Press, 2010:119-185.
    [16]
    苏劲,张水昌,杨海军,等.断裂系统对碳酸盐有效储层的控制及其成藏规律[J].石油学报,2010,31(2):196-203.
    [17]
    朱东亚,孟庆强,金之钧,等.富CO2深部流体对碳酸盐岩的溶蚀充填作用的热力学分析[J].地质科学,2012,47(1):187-201.
    [18]
    C Collettini, B M Carpenter, C Viti,et al. Fault structure and slip localization in carbonate-bearing normal faults: An example from the Northern Apennines of Italy[J]. Journal of Structural Geology,2014,67:154-166.
  • Relative Articles

    [1]JIN Wenzheng. Characteristics of faults and their controlling effect on geothermal energy in Eryuan county, Yunnan Province[J]. CARSOLOGICA SINICA, 2024, 43(1): 57-71. doi: 10.11932/karst20240105
    [2]YANG Chen, DENG Fei, SHI Xuguo. Monitoring subsidence characteristics of Baishazhou karst area in Wuhan with Sentinel-1 images from 2015 to 2019[J]. CARSOLOGICA SINICA, 2023, 42(3): 558-564. doi: 10.11932/karst2023y018
    [3]LIU Yuanqing, ZHOU Le, WANG Xinfeng, LV Lin, LU Xiaohui, YU Kaining, ZHANG Weifeng. Hydrogeological structure model of the fault zone in the karst area of north China[J]. CARSOLOGICA SINICA, 2022, 41(6): 975-985. doi: 10.11932/karst20220609
    [4]JIANG Wen, BAI Daoyuan, YIN Ou, YANG Fan, PENG Zuwu, ZHONG Xiang, LI Bin, LI Yinmin. Characteristics of karst development and its structural control in the Huishangang-Meitanba area of central Hunan[J]. CARSOLOGICA SINICA, 2022, 41(1): 1-12. doi: 10.11932/karst2021y39
    [5]SHAN Keqiang. Landscape classification in karst areas based on DEM:A case study of 1∶50,000 pilot geological mapping of karst areas in southwestern China[J]. CARSOLOGICA SINICA, 2021, 40(2): 334-345. doi: 10.11932/karst20210210
    [6]LUO Dan, YANG Pingheng, WANG Zhixiang, RAN Yu, JIANG Jing, MING Xiaoxing. Formation characteristics of carbonate thermal water controlled by fault in southeastern Chongqing[J]. CARSOLOGICA SINICA, 2019, 38(5): 670-681. doi: 10.11932/karst20190503
    [7]CHENG Yang, PAN Xingcheng. Difficulty degree zoning for 1∶50,000 geological mapping in karst area based on RS and GIS[J]. CARSOLOGICA SINICA, 2018, 37(6): 910-917.
    [8]CHEN Houguo, PAN Ming, WANG Min, LU Shufan, LUO Xiangjian, ZHU Xun. Characteristics of sedimentary microfacies of the Weining formation and its evolution in the Well Ziye-1, located in southern Guizhou Province,China[J]. CARSOLOGICA SINICA, 2017, 36(3): 306-312. doi: 10.11932/karst20170303
    [9]LI Jing-rui, LIANG Bin, YU Hong-feng, ZHANG Qing-yu, CAO Jian-wen, DAN Yong, HAO Yan-zhen, LI Jie. Genesis relationship between faults and karst reservoirs in the Yingshan formation, Medieval No.8 wellblock[J]. CARSOLOGICA SINICA, 2015, 34(2): 147-153. doi: 10.11932/karst20150207
    [10]ZHANG Qing-yu, QIN Feng-rui, LIANG Bin, CAO Jian-wen, DAN Yong, LI Jing-rui. Karst landforms and reservoir characteristics in the Ordovician strata of Lungu 7,Tabei uplift[J]. CARSOLOGICA SINICA, 2014, 33(3): 373-378.
    [12]Andy Eavis. LARGE COLLAPSE CHAMBERS WITHIN CAVES[J]. CARSOLOGICA SINICA, 2006, 25(B08): 43-45.
    [13]CHEN Jian-sheng, ZHAO Xia, WANG Ji-yang, GU Wei-zu, SHENG Xue-fen, SU Zhi-guo. MEANING OF THE DISCOVERY OF LACUSTRINE TUFA AND ROOT-SHAPED NODULE IN BADAIN JARAN DESERT FOR THE STUDY ON LAKE RECHARGE[J]. CARSOLOGICA SINICA, 2004, 23(4): 277-282. doi: 10.3969/j.issn.1001-4810.2004.04.004
    [14]GONG Fu-hua, LIU Xiao-ping. CONTROLLING EFFECTS OF FAULTS OVER PALAEOKARST IN WEST LUNGU REGION, TARIM BASIN[J]. CARSOLOGICA SINICA, 2003, 22(4): 313-317. doi: 10.3969/j.issn.1001-4810.2003.04.011
    [15]Yang Tieming. CHARACTERISTICS OF LONGWANGCHONG FAULT AND ITS SEISMIC RISK ANALYSIS, SOUTHWEST HUBEI[J]. CARSOLOGICA SINICA, 1994, 13(4): 337-344.
    [16]Zhang Cheng, Lao Wenke, He Dianbin, Weng Jintao. STUDY ON HUDROGEOLOGICAL PROPERTIES OF CARBONATE ROCK FAULT--A CASE STUDY OF THE PIEDMONT FAULTIN JIXIAN,TIANJIN CITY[J]. CARSOLOGICA SINICA, 1994, 13(2): 124-132.
    [17]Li Yongle. PRELIMINARY VIEWS ON THE RELATION BETWEEN FAULT STRUCTURES AND KATST AS WELL AS KARST WATER IN MIXIAN CUNTY REGION[J]. CARSOLOGICA SINICA, 1993, 12(1): 67-75.
    [18]Guan Deling, Shi Xinyuan. NUMERICAL METHOD IN SIMULATING THE CONTROL OF FAULT ON LAND COLLAPSR IN KARST AREAS[J]. CARSOLOGICA SINICA, 1988, 7(1): 35-44.
    [19]Li Xingzhong, Li Shuangdai, Lu Xibin. ON THE ROLE OF LESS ACTIVE FRACTURES IN THE HYDROGEOLOGICAL INTERPRETATION OF AERIAL PHOTOES IN KARST REGIONS[J]. CARSOLOGICA SINICA, 1986, 5(增刊): 22-28.
    [20]Lin Yushi, Deng Ziqiang, Liu Gongyu, Zhang Meiliang, Yin Yuejian. KARST METASOMO-REFORMATIONALLY FRACTURAL TECTONITES---CASE HISTORY OF GUILIN KARST REGION[J]. CARSOLOGICA SINICA, 1984, 3(1): 1-13.
  • Cited by

    Periodical cited type(20)

    1. 刘冰雷,赵永刚,张银涛,周飞,谢舟,姚超,丁留洋,赵龙飞,尹帅,孙冲. 塔里木盆地阿满过渡带东部主干走滑断裂变形特征及断溶储集体发育. 地质科学. 2025(02): 360-377 .
    2. 李涛. 超深断控油气藏动态储量影响因素分析——以顺北一区为例. 中国石油和化工标准与质量. 2024(10): 125-127 .
    3. 刘军,黄超,周磊,陈群,张生龙. 基于阵列声波测井估算碳酸盐岩储层岩石力学和地应力参数——以顺北4号带为例. 地质力学学报. 2024(03): 394-407 .
    4. 刘学利,李小波,谭涛,陈勇,彭小龙,冉越,吴昊镪. 超深断溶体油藏注天然气混相驱数值模拟研究. 非常规油气. 2024(06): 44-51 .
    5. 刘学利,谭涛,陈勇,解慧,朱苏阳,吴昊镪,向东流. 顺北一区断溶体油藏溶解气驱开发特征. 新疆石油地质. 2023(02): 195-202 .
    6. 卢志强,杨敏. 顺北1号断裂带洞穴型储集体地震表征方法. 科技和产业. 2023(18): 238-246 .
    7. 卢志强,杨敏. 顺北油气田奥陶系断控体结构模式研究. 科技和产业. 2023(19): 210-217 .
    8. 李小波 ,魏学刚 ,刘学利 ,张艺晓 ,李青 . 顺北油田超深断控缝洞型油藏注水开发实践. 新疆石油地质. 2023(06): 702-710 .
    9. 吴丰,代槿,姚聪,习研平,梁晓宇,王炯,史彪,梁芸. 塔河油田奥陶系一间房组与鹰山组断溶体发育模式解剖. 断块油气田. 2022(01): 33-39 .
    10. 李冬梅,邹伟,谢进,李会会,朱苏阳. 基于等效渗流角模型的顺北油田线性流地层渗透率确定方法. 断块油气田. 2022(02): 251-255 .
    11. 许锦,吴鲜,朱秀香,陈强路,尤东华,席斌斌. 塔里木盆地顺北1号断裂带SHB1-X-3井储层沥青地球化学特征及其与油气演化的关系. 石油实验地质. 2022(04): 677-686 .
    12. 曹飞,卢志强. 相约束贝叶斯同时反演技术及其应用——以塔里木盆地顺北地区5号断裂带北段为例. 天然气地球科学. 2022(10): 1702-1711 .
    13. 周志敏,杨刚,崔建航. 顺北1区SHB5-12井周断溶体储层压裂参数设计研究. 水利与建筑工程学报. 2022(05): 109-116+130 .
    14. 吕艳萍,罗君兰,王炯,张娟,张振哲,马海陇,李兴. 塔河油田典型碳酸盐岩断溶体发育模式. 西安石油大学学报(自然科学版). 2021(01): 20-27 .
    15. 李冬梅,李会会,朱苏阳,李传亮. 顺北油田断溶体油藏孔隙压缩系数理论模型. 新疆石油地质. 2021(02): 194-200 .
    16. 汪如军,王轩,邓兴梁,张银涛,袁敬一,谢舟,李婷,罗枭,马小平. 走滑断裂对碳酸盐岩储层和油气藏的控制作用——以塔里木盆地北部坳陷为例. 天然气工业. 2021(03): 10-20 .
    17. 刘彦锋,张文彪,段太忠,赵华伟. 基于细胞自动机的断控岩溶过程数值模拟方法. 科学技术与工程. 2021(09): 3550-3555 .
    18. 唐磊,王建峰,曹敬华,杨敏,李双贵. 塔里木盆地顺北地区超深断溶体油藏地质工程一体化模式探索. 油气藏评价与开发. 2021(03): 329-339 .
    19. 翟科军,寇春松,陈修平,赵海峰. 断裂带破碎地层井壁稳定机理的离散元法分析. 石油钻采工艺. 2021(05): 559-565 .
    20. 王建云,杨晓波,王鹏,范红康. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术. 石油钻探技术. 2020(03): 8-15 .

    Other cited types(16)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1792) PDF downloads(467) Cited by(36)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return