• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 38 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
HUO Weijie, PU Junbing, LI Jianhong, ZHANG Tao, WANG Sainan. Spatial and temporal variations of soil water δD and δ18O values in dry season in a typical karst depression of a karst graben basin, Yunnan Province, south China[J]. CARSOLOGICA SINICA, 2019, 38(3): 307-317. doi: 10.11932/karst20190303
Citation: HUO Weijie, PU Junbing, LI Jianhong, ZHANG Tao, WANG Sainan. Spatial and temporal variations of soil water δD and δ18O values in dry season in a typical karst depression of a karst graben basin, Yunnan Province, south China[J]. CARSOLOGICA SINICA, 2019, 38(3): 307-317. doi: 10.11932/karst20190303

Spatial and temporal variations of soil water δD and δ18O values in dry season in a typical karst depression of a karst graben basin, Yunnan Province, south China

doi: 10.11932/karst20190303
  • Publish Date: 2019-06-25
  • Stable isotope compositions (δD and δ18O) of soil water can be used to reveal some important information about soil hydrology, including rainwater infiltration, evaporation, groundwater recharge and specific flow and transport processes taking place in the soil. In this study, stable hydrogen and oxygen isotope component of soil water in different months and soil depths in Niuerpo karst depression (Dong mountain, Mengzi City, Yunnan Province) were analyzed. The study aimed to revealing the spatial and temporal variation characteristics of soil water in the area and providing a scientific basis for further research of soil water movement mechanism. The results show that the δD and δ18O values range from -128.3‰ to -27.6‰ and -17.5‰ to 2.5‰, with a mean value of -96.1‰±20.7‰ and -12.3‰±3.7‰, respectively. Fractionation of δD and δ18O value of the water possibly occurs to some extent when rainwater infiltrates into the soil and then is redistributed in the soil layers. The mean values of δD and δ18O of soil water in April (-86.3‰±23.8‰ and -10.6‰±4.3‰, respectively) are significant higher than that in February (-106.1‰±9.5‰ and -14.1‰±1.6‰, respectively), which was mainly attributed to the evaporation of the soil water. Spatially, there is a difference in the composition of hydrogen and oxygen isotopes between the soil of slope land and the depression. In February, there is a significant difference in the δD and δ18O value between the slope land and the depression (p<0.05). The soil water δD and δ18O value in the depression were lighter than those in the slope. In April, there is no significant difference in δD and δ18O value of soil water between the slope land and the depression (p>0.05). The soil water δD and δ18O values in the depression are slightly lighter than those in the slope. The soil water δD and δ18O values decrease with the increases of soil depth in vertical profile. There are significant differences between shallow soil water δ18O and deep soil water δ18O. In February, the δ18O value of shallow soil water is 2.8‰ higher than that of deep soil water; in April, the δ18O value of shallow soil water is 10.5‰ higher than that of deep soil water.

     

  • loading
  • [1]
    Evaristo J,Jasechko S,Mcdonnell J J.Global separation of plant transpiration from groundwater and streamflow[J].Nature,2015,525(7567):91-94.
    [2]
    Mcdonnell J J. The two water world hypothesis: Ecohydrological separation of water between streams and trees?[J]. Wiley Interdisciplinary Reviews Water, 2014, 1(4):323-329.
    [3]
    Burgess S S O, Adams M A, Turner N C, et al. Characterisation of hydrogen isotope profiles in an agroforestry system: implications for tracing water sources of trees[J]. Agricultural Water Management, 2000, 45(3):229-241.
    [4]
    李新荣, 张志山, 王新平,等. 干旱区土壤植被系统恢复的生态水文学研究进展[J]. 中国沙漠, 2009, 29(5):845-852.
    [5]
    Famiglietti J S, Rudnicki J W, Rodell M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas[J]. Journal of Hydrology, 1998, 210(1-4):259-281.
    [6]
    王军, 傅伯杰, 蒋小平. 土壤水分异质性的研究综述[J]. 水土保持研究, 2002, 9(1):1-5.
    [7]
    Ladson A R, Moore I D. Soil water prediction on the Konza Prairie by microwave remote sensing and topographic attributes[J]. Journal of Hydrology, 1992, 138(92):385-407.
    [8]
    Barnes C J, Allison G B. The distribution of deuterium and 18O in dry soils:1.Theory[J]. Journal of Hydrology, 1983, 60(1):141-156.
    [9]
    Gazis C, Feng X. A stable isotope study of soil water: evidence for mixing and preferential flow paths[J]. Geoderma, 2004, 119(1):97-111.
    [10]
    Evaristo J, Mcdonnell J J. Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis[J].Scientific Reports,2017,7:44110.
    [11]
    Mccutcheon R J, Mcnamara J P, Kohn M J, et al. An evaluation of the ecohydrological separation hypothesis in a semiarid catchment[J]. Hydrological Processes, 2017, 31(4):783-799.
    [12]
    Grant G E, Dietrich W E. The frontier beneath our feet[J]. Water Resources Research, 2017, 53:2605-2609.
    [13]
    杨静, 陈洪松, 聂云鹏,等. 典型喀斯特峰丛洼地降雨特性及浅层地下水埋深变化特征[J]. 水土保持学报, 2012, 26(5):239-243.
    [14]
    赵志猛, 沈有信, 朱习爱. 西南岩溶地区土壤水分研究进展[J]. 湖北农业科学, 2017,56(19):3603-3609.
    [15]
    刘延惠, 崔迎春. 喀斯特山地森林土壤水分动态变化研究[J]. 中国高校科技, 2006(s1):229-233.
    [16]
    张继光,苏以荣,陈洪松,等.典型喀斯特峰丛洼地土壤水分时空动态研究[J].农业环境科学学报,2007,26(4):1432-1437.
    [17]
    黄代民, 陈效民, 李孝良,等. 西南喀斯特地区土壤水分变异性研究[J]. 中国农学通报, 2010, 26(13):207-212.
    [18]
    杜雪莲, 王世杰. 喀斯特高原区土壤水分的时空变异分析:以贵州清镇王家寨小流域为例[J]. 地球与环境, 2008, 36(3):193-201.
    [19]
    傅伟, 陈洪松, 王克林. 喀斯特坡地不同土地利用类型土壤水分差异性研究[J]. 中国生态农业学报, 2007, 15(5):59-62.
    [20]
    王家文, 周跃, 肖本秀,等. 中国西南喀斯特土壤水分特征研究进展[J]. 中国水土保持, 2013(2):37-41.
    [21]
    刘延惠, 崔迎春. 喀斯特山地森林土壤水分动态变化研究[J]. 中国高校科技, 2006(s1):229-233.
    [22]
    Waltham T. Fengcong, fenglin, cone karst and tower karst[J]. Carsologica Sinica, 2009, 35(3):77-88.
    [23]
    杨胜天, 王玉娟, 温志群,等. 典型喀斯特灌丛草坡类型区土壤水变化规律研究[J]. 水土保持通报, 2007, 27(4):100-106.
    [24]
    刘海隆, 蒋太明, 刘洪斌,等. 不同土地利用方式对岩溶山区旱坡地土壤水分时空分异的影响[J]. 土壤学报, 2005, 42(3):428-433.
    [25]
    Zimmermann U, Münnich K O, Roether W, et al. Tracers Determine Movement of Soil Moisture and Evapotranspiration[J]. Science, 1966, 152(3720):346-347.
    [26]
    Blume H P, Zimmerman U, Munnich K O. Tritium tagging of soil moisture: the water balance of forest soils[C] // IAEA. Isotope and Radiation Techniques in Soil Physics and Irrigation Studies (Istanbul). Vienna: International Atomic Energy Agency, 1967:315-332.
    [27]
    Brinkmann R, Eichler R, Ehhalt D, et al. über den Deuterium-Gehalt von Niederschlags- und Grundwasser[J]. Naturwissenschaften, 1963, 50(19):611-612.
    [28]
    Pionke H B, Dewalle D R. Intra- and inter-storm 18 O trends for selected rainstorms in Pennsylvania[J]. Journal of Hydrology, 1992, 138(1-2):131-143.
    [29]
    Kendall C. Effect of intrastorm isotopic heterogeneities of rainfall, soil water, and groundwater on runoff modeling[C]// Tracers in Hydrology : Proceedings of the Yokohama Symposium, July. 1993.
    [30]
    Liu W, Li P, Li H, et al. Estimation of evaporation rate from soil surface using stable isotopic composition of throughfall and stream water in a tropical seasonal rain forest of Xishuangbanna, Southwest China[J]. Acta Ecologica Sinica, 2006, 26(5):1303-1310.
    [31]
    Ikawa R, Yamamoto T, Shimada J, et al. Temporal variations of isotopic compositions in gross rainfall, throughfall, and stemflow under a Japanese cedar forest during a typhoon event[J]. Hydrological Research Letters, 2011,5:32-36.
    [32]
    Liu Y, Liu F, Xu Z, et al. Variations of soil water isotopes and effective contribution times of precipitation and throughfall to alpine soil water, in Wolong Nature Reserve, China[J]. Catena, 2015, 126(4):201-208.
    [33]
    Zimmermann U, Ehhalt D, Miinnlch K O. Soil water movement and evapotranspiration: changes in the isotopic composition of water[C] // IAEA. Isotope and Radiation Techniques in Soil Physics and Irrigation Studies (Istanbul). Vienna: International Atomic Energy Agency, 1967:567-584.
    [34]
    Mccole A A, Stern L A. Seasonal water use patterns of Juniperus ashei, on the Edwards Plateau, Texas, based on stable isotopes in water[J]. Journal of Hydrology, 2007, 342(3):238-248.
    [35]
    Zhang W, An S, Xu Z, et al. The impact of vegetation and soil on runoff regulation in headwater streams on the east Qinghai-Tibet Plateau, China[J]. Catena, 2011, 87(2):182-189.
    [36]
    Ferretti D F, Pendall E, Morgan J A, et al. Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes: Seasonal variations and ecosystem implications of elevated atmospheric CO2[J]. Plant & Soil, 2003, 254(2):291-303.
    [37]
    Jean C C H, Oliver A C, Eugene F K, et al. Oxygen isotopic composition of soil water: Quantifying evaporation and transpiration[J]. Geofisica Internacional, 1998, 82(1-3):269-293.
    [38]
    Sprenger M, Leistert H, Gimbel K, et al. Illuminating hydrological processes at the soil vegetation atmosphere interface with water stable isotopes[J]. Reviews of Geophysics, 2016, 54(3):674-704.
    [39]
    刘伟,王世杰,罗维均.贵州荔波喀斯特与非喀斯特地区土壤水运移的对比研究[J].地球与环境,2011,39(2):137-149.
    [40]
    邢丹,肖玖军,王晓红.黔西北石漠化桑园土壤水稳定同位素的时空变化特征[J].西南农业学报,2017,30(3):639-644.
    [41]
    谭继中, 谭继泽. 云南断陷盆地浅循环岩溶水赋存规律初步研究[J]. 地质与资源, 2003, 12(2):91-96.
    [42]
    莫美仙, 王宇, 李峰. 滇东断陷盆地地下水污染的水文地质模式[J]. 昆明理工大学学报(自然科学版), 2014(5):88-95.
    [43]
    李强, 蒲俊兵,黄妮,等.断陷盆地生态环境地质分异及石漠化演变机理的研究途径[J].地球科学进展,2017(9):899-907.
    [44]
    孙永磊, 周金星, 庞丹波. 喀斯特断陷盆地不同植被恢复模式土壤水分动态变化[J].林业科学研究,2018,31(4):104-112.
    [45]
    杨慧, 朱同彬, 王修华,等. 云南断陷盆地高原面典型小流域土壤元素含量特征[J]. 生态环境学报, 2018(5):71-77.
    [46]
    蒋忠诚, 李先琨, 胡宝清. 广西岩溶山区石漠化及其综合治理研究[M]. 北京:科学出版社, 2011.
    [47]
    李广, 章新平, 许有鹏,等. 滇南蒙自地区降水稳定同位素特征及其水汽来源[J]. 环境科学, 2016, 37(4):1313-1320.
    [48]
    赵诗坤, 庞朔光, 文蓉,等. 海河流域降水稳定同位素的云底二次蒸发效应[J]. 地理科学进展, 2015, 34(8):1031-1038.
    [49]
    田立德, 姚檀栋, M TSUJIMURA,等. 青藏高原中部土壤水中稳定同位素变化[J]. 土壤学报, 2002, 39(3):289-295.
    [50]
    李晖, 蒋忠诚, 周宏飞,等. 准噶尔盆地降水、土壤水和地下水中δ18O和δD变化特征:以中国生态系统研究网络阜康站为例[J]. 水土保持研究, 2008(5):105-108.
    [51]
    Buttle J M, Sami K. Recharge processes during snowmelt: An isotopic and hydrometric investigation[J].Hydrological Processes, 1990, 4(4):343-360.
    [52]
    刘保清, 刘志民, 钱建强,等. 科尔沁沙地南缘主要固沙植物旱季水分来源[J]. 应用生态学报, 2017, 28(7):2093-2101.
    [53]
    王贺,李占斌,马波.黄土高原丘陵沟壑区流域不同水体氢氧同位素特征:以纸坊沟流域为例[J].水土保持学报,2016,30(4):85-90,135.
    [54]
    Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[J]. Fao, Rome, 1998, 300(9): D05109.
    [55]
    Gowing J W, Konukcu F, Rose D A. Evaporative flux from a shallow watertable: The influence of a vapour-liquid phase transition[J]. Journal of Hydrology,2006,321(1-4):77-89.
    [56]
    罗维均, 王世杰. 贵州凉风洞大气降水-土壤水-滴水的δ18O信号传递及其意义[J]. 科学通报, 2008(17):2071-2076.
    [57]
    Yamanaka T, Inoue M, Kaihotsu I. Effects of gravel mulch on water vapor transfer above and below the soil surface[J]. Agricultural Water Management, 2004, 67(2):145-155.
    [58]
    马菁, 宋维峰, 吴锦奎,等. 元阳梯田水源区林地降水与土壤水同位素特征[J]. 水土保持学报, 2016, 30(2):243-248.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1925) PDF downloads(499) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return