Citation: | HUO Weijie, PU Junbing, LI Jianhong, ZHANG Tao, WANG Sainan. Spatial and temporal variations of soil water δD and δ18O values in dry season in a typical karst depression of a karst graben basin, Yunnan Province, south China[J]. CARSOLOGICA SINICA, 2019, 38(3): 307-317. doi: 10.11932/karst20190303 |
[1] |
Evaristo J,Jasechko S,Mcdonnell J J.Global separation of plant transpiration from groundwater and streamflow[J].Nature,2015,525(7567):91-94.
|
[2] |
Mcdonnell J J. The two water world hypothesis: Ecohydrological separation of water between streams and trees?[J]. Wiley Interdisciplinary Reviews Water, 2014, 1(4):323-329.
|
[3] |
Burgess S S O, Adams M A, Turner N C, et al. Characterisation of hydrogen isotope profiles in an agroforestry system: implications for tracing water sources of trees[J]. Agricultural Water Management, 2000, 45(3):229-241.
|
[4] |
李新荣, 张志山, 王新平,等. 干旱区土壤植被系统恢复的生态水文学研究进展[J]. 中国沙漠, 2009, 29(5):845-852.
|
[5] |
Famiglietti J S, Rudnicki J W, Rodell M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas[J]. Journal of Hydrology, 1998, 210(1-4):259-281.
|
[6] |
王军, 傅伯杰, 蒋小平. 土壤水分异质性的研究综述[J]. 水土保持研究, 2002, 9(1):1-5.
|
[7] |
Ladson A R, Moore I D. Soil water prediction on the Konza Prairie by microwave remote sensing and topographic attributes[J]. Journal of Hydrology, 1992, 138(92):385-407.
|
[8] |
Barnes C J, Allison G B. The distribution of deuterium and 18O in dry soils:1.Theory[J]. Journal of Hydrology, 1983, 60(1):141-156.
|
[9] |
Gazis C, Feng X. A stable isotope study of soil water: evidence for mixing and preferential flow paths[J]. Geoderma, 2004, 119(1):97-111.
|
[10] |
Evaristo J, Mcdonnell J J. Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis[J].Scientific Reports,2017,7:44110.
|
[11] |
Mccutcheon R J, Mcnamara J P, Kohn M J, et al. An evaluation of the ecohydrological separation hypothesis in a semiarid catchment[J]. Hydrological Processes, 2017, 31(4):783-799.
|
[12] |
Grant G E, Dietrich W E. The frontier beneath our feet[J]. Water Resources Research, 2017, 53:2605-2609.
|
[13] |
杨静, 陈洪松, 聂云鹏,等. 典型喀斯特峰丛洼地降雨特性及浅层地下水埋深变化特征[J]. 水土保持学报, 2012, 26(5):239-243.
|
[14] |
赵志猛, 沈有信, 朱习爱. 西南岩溶地区土壤水分研究进展[J]. 湖北农业科学, 2017,56(19):3603-3609.
|
[15] |
刘延惠, 崔迎春. 喀斯特山地森林土壤水分动态变化研究[J]. 中国高校科技, 2006(s1):229-233.
|
[16] |
张继光,苏以荣,陈洪松,等.典型喀斯特峰丛洼地土壤水分时空动态研究[J].农业环境科学学报,2007,26(4):1432-1437.
|
[17] |
黄代民, 陈效民, 李孝良,等. 西南喀斯特地区土壤水分变异性研究[J]. 中国农学通报, 2010, 26(13):207-212.
|
[18] |
杜雪莲, 王世杰. 喀斯特高原区土壤水分的时空变异分析:以贵州清镇王家寨小流域为例[J]. 地球与环境, 2008, 36(3):193-201.
|
[19] |
傅伟, 陈洪松, 王克林. 喀斯特坡地不同土地利用类型土壤水分差异性研究[J]. 中国生态农业学报, 2007, 15(5):59-62.
|
[20] |
王家文, 周跃, 肖本秀,等. 中国西南喀斯特土壤水分特征研究进展[J]. 中国水土保持, 2013(2):37-41.
|
[21] |
刘延惠, 崔迎春. 喀斯特山地森林土壤水分动态变化研究[J]. 中国高校科技, 2006(s1):229-233.
|
[22] |
Waltham T. Fengcong, fenglin, cone karst and tower karst[J]. Carsologica Sinica, 2009, 35(3):77-88.
|
[23] |
杨胜天, 王玉娟, 温志群,等. 典型喀斯特灌丛草坡类型区土壤水变化规律研究[J]. 水土保持通报, 2007, 27(4):100-106.
|
[24] |
刘海隆, 蒋太明, 刘洪斌,等. 不同土地利用方式对岩溶山区旱坡地土壤水分时空分异的影响[J]. 土壤学报, 2005, 42(3):428-433.
|
[25] |
Zimmermann U, Münnich K O, Roether W, et al. Tracers Determine Movement of Soil Moisture and Evapotranspiration[J]. Science, 1966, 152(3720):346-347.
|
[26] |
Blume H P, Zimmerman U, Munnich K O. Tritium tagging of soil moisture: the water balance of forest soils[C] // IAEA. Isotope and Radiation Techniques in Soil Physics and Irrigation Studies (Istanbul). Vienna: International Atomic Energy Agency, 1967:315-332.
|
[27] |
Brinkmann R, Eichler R, Ehhalt D, et al. über den Deuterium-Gehalt von Niederschlags- und Grundwasser[J]. Naturwissenschaften, 1963, 50(19):611-612.
|
[28] |
Pionke H B, Dewalle D R. Intra- and inter-storm 18 O trends for selected rainstorms in Pennsylvania[J]. Journal of Hydrology, 1992, 138(1-2):131-143.
|
[29] |
Kendall C. Effect of intrastorm isotopic heterogeneities of rainfall, soil water, and groundwater on runoff modeling[C]// Tracers in Hydrology : Proceedings of the Yokohama Symposium, July. 1993.
|
[30] |
Liu W, Li P, Li H, et al. Estimation of evaporation rate from soil surface using stable isotopic composition of throughfall and stream water in a tropical seasonal rain forest of Xishuangbanna, Southwest China[J]. Acta Ecologica Sinica, 2006, 26(5):1303-1310.
|
[31] |
Ikawa R, Yamamoto T, Shimada J, et al. Temporal variations of isotopic compositions in gross rainfall, throughfall, and stemflow under a Japanese cedar forest during a typhoon event[J]. Hydrological Research Letters, 2011,5:32-36.
|
[32] |
Liu Y, Liu F, Xu Z, et al. Variations of soil water isotopes and effective contribution times of precipitation and throughfall to alpine soil water, in Wolong Nature Reserve, China[J]. Catena, 2015, 126(4):201-208.
|
[33] |
Zimmermann U, Ehhalt D, Miinnlch K O. Soil water movement and evapotranspiration: changes in the isotopic composition of water[C] // IAEA. Isotope and Radiation Techniques in Soil Physics and Irrigation Studies (Istanbul). Vienna: International Atomic Energy Agency, 1967:567-584.
|
[34] |
Mccole A A, Stern L A. Seasonal water use patterns of Juniperus ashei, on the Edwards Plateau, Texas, based on stable isotopes in water[J]. Journal of Hydrology, 2007, 342(3):238-248.
|
[35] |
Zhang W, An S, Xu Z, et al. The impact of vegetation and soil on runoff regulation in headwater streams on the east Qinghai-Tibet Plateau, China[J]. Catena, 2011, 87(2):182-189.
|
[36] |
Ferretti D F, Pendall E, Morgan J A, et al. Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes: Seasonal variations and ecosystem implications of elevated atmospheric CO2[J]. Plant & Soil, 2003, 254(2):291-303.
|
[37] |
Jean C C H, Oliver A C, Eugene F K, et al. Oxygen isotopic composition of soil water: Quantifying evaporation and transpiration[J]. Geofisica Internacional, 1998, 82(1-3):269-293.
|
[38] |
Sprenger M, Leistert H, Gimbel K, et al. Illuminating hydrological processes at the soil vegetation atmosphere interface with water stable isotopes[J]. Reviews of Geophysics, 2016, 54(3):674-704.
|
[39] |
刘伟,王世杰,罗维均.贵州荔波喀斯特与非喀斯特地区土壤水运移的对比研究[J].地球与环境,2011,39(2):137-149.
|
[40] |
邢丹,肖玖军,王晓红.黔西北石漠化桑园土壤水稳定同位素的时空变化特征[J].西南农业学报,2017,30(3):639-644.
|
[41] |
谭继中, 谭继泽. 云南断陷盆地浅循环岩溶水赋存规律初步研究[J]. 地质与资源, 2003, 12(2):91-96.
|
[42] |
莫美仙, 王宇, 李峰. 滇东断陷盆地地下水污染的水文地质模式[J]. 昆明理工大学学报(自然科学版), 2014(5):88-95.
|
[43] |
李强, 蒲俊兵,黄妮,等.断陷盆地生态环境地质分异及石漠化演变机理的研究途径[J].地球科学进展,2017(9):899-907.
|
[44] |
孙永磊, 周金星, 庞丹波. 喀斯特断陷盆地不同植被恢复模式土壤水分动态变化[J].林业科学研究,2018,31(4):104-112.
|
[45] |
杨慧, 朱同彬, 王修华,等. 云南断陷盆地高原面典型小流域土壤元素含量特征[J]. 生态环境学报, 2018(5):71-77.
|
[46] |
蒋忠诚, 李先琨, 胡宝清. 广西岩溶山区石漠化及其综合治理研究[M]. 北京:科学出版社, 2011.
|
[47] |
李广, 章新平, 许有鹏,等. 滇南蒙自地区降水稳定同位素特征及其水汽来源[J]. 环境科学, 2016, 37(4):1313-1320.
|
[48] |
赵诗坤, 庞朔光, 文蓉,等. 海河流域降水稳定同位素的云底二次蒸发效应[J]. 地理科学进展, 2015, 34(8):1031-1038.
|
[49] |
田立德, 姚檀栋, M TSUJIMURA,等. 青藏高原中部土壤水中稳定同位素变化[J]. 土壤学报, 2002, 39(3):289-295.
|
[50] |
李晖, 蒋忠诚, 周宏飞,等. 准噶尔盆地降水、土壤水和地下水中δ18O和δD变化特征:以中国生态系统研究网络阜康站为例[J]. 水土保持研究, 2008(5):105-108.
|
[51] |
Buttle J M, Sami K. Recharge processes during snowmelt: An isotopic and hydrometric investigation[J].Hydrological Processes, 1990, 4(4):343-360.
|
[52] |
刘保清, 刘志民, 钱建强,等. 科尔沁沙地南缘主要固沙植物旱季水分来源[J]. 应用生态学报, 2017, 28(7):2093-2101.
|
[53] |
王贺,李占斌,马波.黄土高原丘陵沟壑区流域不同水体氢氧同位素特征:以纸坊沟流域为例[J].水土保持学报,2016,30(4):85-90,135.
|
[54] |
Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[J]. Fao, Rome, 1998, 300(9): D05109.
|
[55] |
Gowing J W, Konukcu F, Rose D A. Evaporative flux from a shallow watertable: The influence of a vapour-liquid phase transition[J]. Journal of Hydrology,2006,321(1-4):77-89.
|
[56] |
罗维均, 王世杰. 贵州凉风洞大气降水-土壤水-滴水的δ18O信号传递及其意义[J]. 科学通报, 2008(17):2071-2076.
|
[57] |
Yamanaka T, Inoue M, Kaihotsu I. Effects of gravel mulch on water vapor transfer above and below the soil surface[J]. Agricultural Water Management, 2004, 67(2):145-155.
|
[58] |
马菁, 宋维峰, 吴锦奎,等. 元阳梯田水源区林地降水与土壤水同位素特征[J]. 水土保持学报, 2016, 30(2):243-248.
|