Citation: | ZHANG Cheng, JIANG Zhongcheng, Chris Groves, YUAN Daoxian. 30 years international cooperation with IGCP and perspectives of karst critical zone research[J]. CARSOLOGICA SINICA, 2019, 38(3): 301-306. doi: 10.11932/karst20190302 |
[1] |
Jiang Z Ch, Zhang Ch, Qin X Q, et al. Structure feature and function of the karst critical zone[J]. Acta Geologica Sinica(English Edition), 2019,93(s1):109-112.
|
[2] |
Ford D C , William P W. Karst hydrogeology and geomorphology [M]. Chichester: JohnWilly&Sons, 2007:1-562.
|
[3] |
Yuan D X, Liu Z H(Eds.), Global Karst Correlation[C]. Beijing/New York:Science Press; Utrecht/Tokyo:VSP BV. 1998,308.
|
[4] |
Yuan D X. The carbon cycle in karst[C].Z. Geomorph N F,SupplBd,1997,108:91-102.
|
[5] |
Yuan D X, Cheng H, Edwards R L, et al., Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304:575-578.
|
[6] |
Chris G, Yuan D X,Zhang Ch. IGCP299, 379, 448, 513, 598:Global efforts to understand the nature of karst systems:over two decades with the IGCP[C]. In:Derbyshire E.(Ed.), Tales Set in Stone-40 Years of the International Geoscience Programme(IGCP). UNESCO Paris, Framce,2012:80-87.
|
[7] |
Zhang Ch , Chris G , Yuan D X, New development of IGCP/SIDA 598 "Environmental Change and Sustainability in Karst Systems (2011-2015)"[J]. Episodes, 2015,38(3):219-221.
|
[8] |
Plummer L N, Wigley T M L, Parkhurst D L. Kinetics of calcite dissolution in CO2 -water systems at 5 ℃to 60 ℃ and 0.0 to 1.0 atm CO2 [J]. America Journal of Science, 1978,278:179-216.
|
[9] |
Kump L R, Brantley S L, Arthur M A. Chemical weathering, atmospheric CO2, and climate[J]. Annu Rev Earth Planet Sci, 2000,28:611-667.
|
[10] |
Dreybrodt W. Processes in Karst systems:Physics, Chemistry, and Geology[M]. Berlin Heidelberg:Springer-Verlag,1988, 288.
|
[11] |
Liu Z, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow:The role of the diffusion boundary layer and the slow reaction H2O+CO2H++HCO-3[J]. Geochim Cosmochim Acta, 1997,61:2879-2889.
|
[12] |
Hélie J-F, HillaireMarcel C, Rondeau B. Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St.Lawrence River-isotopic and chemical constraint. Chemical Geology[J]. 2002, 186(1):117-138.
|
[13] |
Yuan D X, Sensitivity of karst process to environmental change along the PEP II transect[J]. Quaternary International, 1997,37:105-113.
|
[14] |
Jiang Zh C, Yuan D X. CO2 Source-sink in karst processes in karst areas of China[J]. Episodes, 1999, 22:33-35.
|
[15] |
Yuan D X, Zhang Ch (Eds). Karst Processes and the carbon cycle-Final Report of IGCP379[C]. Beijing:Geological Publishing House,2002,220.
|
[16] |
Yoshimura K, Inokura Y. The geochemical cycle of carbon dioxide in a carbonate rock area, Akiyoshi-dai Plateau, Yamaguchi, Southwestern, Japan[C]. In:Proceedings of 30th International Geological Congress,1997,24:114-126.
|
[17] |
Liu Z, Zhao J. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Environmental Geology, 2000,39:1053-1058.
|
[18] |
Montety V de, Martin J B, Cohen M J, et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology, 2011, 283:31-43.
|
[19] |
Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget:Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Sci Rev., 2010,99:162-172.
|
[20] |
Zhang Ch. Carbonate rock dissolution rates in different landuses and their carbon sink effect[J]. Chinese Sci Bull, 2011,56:3759-3765.
|
[21] |
Zhang Ch , Mahippong W , Wang J L, et al. Dissolution rates in soil of different landuses of typical tropical karst peak depression valley in Thailand[J]. Quaternary Science, 2016,36(6):1393-1402.
|
[22] |
Zhang Ch, Yuan D X, Cao J H, Analysis of the environmental sensitivities of a typical dynamic epikarst system at the Nongla monitoring site, Guangxi, China[J]. Environmental Geology, 2005, 47:615-619.
|
[23] |
王宇.岩溶高原地下水径流系统垂向分带[J].中国岩溶,2018,37(1):1-8.
|
[24] |
Yuan D X, Karst of China[M]. Beijing:Geological Publishing House, 1991:224.
|
[25] |
Doerfliger N, Jeannin P Y, Zwahlen F. Water vulnerability assessment in karst environment:a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method) [J]. Environmental Geology, 1999,39(2):165-176.
|
[26] |
Jeannin P Y, Cornaton F, Zwahlen F, et al. VULK:a tool for intrinsic vulnerability assessment and validation[C]. In:Seventh conference on limestone hydrology and fissured media, Besnacon 20-22 Sep 2001, Sciences et techniques de l’environnement. Mémoire hors-série, 2001,13:185-190.
|
[27] |
Malík P, ?vasta J. REKS-An alternative method of karst groundwater vulnerability estimation[C]. In:Proceedings of XXIX IAH Congress:Hydrogeology and land use management. Editors:Miriam Fendeková, Marián Fendek. Bratislava, Slovak Republic, 1999, 79-86.
|
[28] |
Daly D, Dassargues A, Drew D, et al. Main concepts of the European approach for (karst) groundwater vulnerability assessment and mapping[J]. Hydrogeol J,2002,10(2):340-345.
|
[29] |
Malík P, ?vasta J, Groundwater Vulnerability Assessment Using Physical Principles of Contamination[C]. In:Decision support for natural disasters and intentional threats to water security(Illangasekare T H et al. (eds.)), Springer Science+Business Media B.V. 2009:199-211.
|
[30] |
Malík P, ?vasta J, Michalko J, et al. Indicative mean transit time estimation from δ18O values as groundwater vulnerability indicator in karst-fissure aquifers[J]. Environmental Earth Science,2016,75:988. (https://doi.org/10.1007/s12665-016-5791-2.)
|
[31] |
章程,曹建华.不同植被条件下表层岩溶泉动态变化特征对比研究:以广西马山弄拉兰电堂和东旺泉为例[J].中国岩溶,2003,22(1):1-5.
|
[32] |
彭韬,周长生,宁茂岐,等.基于探地雷达解译的喀斯特坡地表层岩溶带空间分布特征研究[J].第四纪研究,2017,37(6):1262-1270.
|
[33] |
Yuan D X. IGCP448, World Correlation of Karst Ecosystem(2000-2004) [J]. Episodes, 2000,23(4):285-286.
|
[34] |
Zhang Cheng, Yuan Daoxian. New development of IGCP 448 “World Correlation of Karst Ecosystem (20002004)”[J]. Episodes, 2001,24(4):279-280.
|
[35] |
Jiang Z C, Lian Y Q, Qin X Q. Rock desertification in southwest China:impact, cause, and restoration[J]. Earth Science Review,2014,132:1-12.
|
[36] |
蒋忠诚,罗为群,童立强,等.21世纪西南岩溶石漠化演变特点及影响因素[J].中国岩溶,2016,35(5):461-468.
|
[37] |
Luo W Q, Jiang Zh Ch , Yang Q Y,et al. The features of soil erosion and soil leakage in karst peak-cluster areas of Southwest China[J]. Journal of Groundwater Science and Engineering, 2018, 6(1):18-30.
|
[38] |
Brantley S L, White T S, White A F. Frontiers in exploration of the critical zone[R]. USA,2005.
|
[39] |
Lin H S. Earth’s Critical Zone and hydropedology:concepts, characteristics, and advances[J]. Hydrology and Earth System Sciences,2010,6(2):3417-3481.
|
[40] |
National Research Council. Basic Research Opportunities in Earth Science[M]. Washington DC:National Academy Press,2001, Chapter2:35-45.
|