• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 38 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
LI Jianhong, PU Junbing, ZHANG Tao, WANG Sainan, XIONG Xiaofeng, HUO Weijie. Effects of light rainfall events on spatial variation of soil moisture and leaf water potential of apple tree (Malus pumila Mill.) in a karst graben basin, Yunnan Province[J]. CARSOLOGICA SINICA, 2019, 38(2): 233-242. doi: 10.11932/karst20190208
Citation: LI Jianhong, PU Junbing, ZHANG Tao, WANG Sainan, XIONG Xiaofeng, HUO Weijie. Effects of light rainfall events on spatial variation of soil moisture and leaf water potential of apple tree (Malus pumila Mill.) in a karst graben basin, Yunnan Province[J]. CARSOLOGICA SINICA, 2019, 38(2): 233-242. doi: 10.11932/karst20190208

Effects of light rainfall events on spatial variation of soil moisture and leaf water potential of apple tree (Malus pumila Mill.) in a karst graben basin, Yunnan Province

doi: 10.11932/karst20190208
  • Publish Date: 2019-04-25
  • Karst graben basins are special type of karst landforms, which are widely distributed in southwestern Sichuan and Eastern Yunnan Province. In mountainous areas of karst graben basins, light rainfall takes a big proportion of annual precipitation with short occurrence. with short occurrence intervals. The purpose of this work is to study the spatial variations and the response processes of soil moisture and leaf water potential of apple tree (Malus pumila Mill.) to such light rainfall events. The results showed that,(1) the light rainfall events in the mountainous area can only supply the soil water to the maximum depth of 10 cm, so in the dry season (before heavy rainfall events), soil moisture declines with the depth in the vertical section. Due to the topography of the depression, soil moisture (0-80 cm) and leaf water potential of apple tree gradually increase along the slope direction from the top to the bottom of the depression. Because of geological background differences, the soil moisture in the west slope (soil-rocky slope) is 2.67% higher than that in the east slope (rocky slope), thus, the drought degree of apple trees on west slopes are less than that east slopes. (2) There were 12 times light rainfall events in 8 days which can make the surface soil moisture (0~10 cm) rise slightly, but failed to completely change the characteristics that the soil moisture in the bottom of the depression was higher than that on both slopes and the soil moisture of west slop was higher than that of east slope. (3) Although light rainfall events can only supply the soil moisture of 0-10 cm, some shallow apple roots can absorb water because of the shallow distribution (5-30 cm) of apple roots in sloping areas. On the other hand, light rainfall events could decrease air temperature, increase humidity and reduce the solar radiation, which could reduce the transpiration of apple tree and the water potential of apple leaves. It is indicated that the light rainfall events can significantly reduce the drought degree of apple trees.

     

  • loading
  • [1]
    邓艳,蒋忠诚,李衍青,等. 广西不同石漠化程度下典型植物水分来源分析[J].热带地理, 2015,35(3):416-421.
    [2]
    Western A W, Bl?schl G, Grayson R B. Geostatistical characterization of soil moisture patterns in the Tarrawarra catchment [J]. Journal of Hydrology, 1998, 205(1-2): 20-37.
    [3]
    王军, 傅伯杰, 蒋小平. 土壤水分异质性的研究综述[J]. 水土保持研究, 2002, 9(1): 1-5.
    [4]
    Ladson A R, Moore I D. Soil water prediction on the Konza Prairie by microwave remote sensing and topographic attributes [J]. Journal of Hydrology, 1992, 138(3-4): 385-407.
    [5]
    Famiglietti J S, Rudnicki J W, Rodell M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of Hydrology, 1998, 210(1): 259-281.
    [6]
    张伟, 陈洪松, 王克林, 等. 喀斯特地区典型峰丛洼地旱季表层土壤水分空间变异性初探[J]. 土壤学报, 2006, 43(4): 554-562.
    [7]
    张继光, 陈洪松, 苏以荣, 等. 喀斯特地区典型峰丛洼地表层土壤水分空间变异及合理取样数研究[J]. 水土保持学报, 2006, 20(2):114-134.
    [8]
    贾小旭, 邵明安, 张晨成, 等. 黄土高原南北样带不同土层土壤水分变异与模拟[J]. 水科学进展, 2016, 27(4): 520-528.
    [9]
    李洪建, 王孟本, 柴宝峰. 黄土高原土壤水分变化的时空特征分析[J]. 应用生态学报, 2003, 14(4): 515-519.
    [10]
    段良霞, 黄明斌, 张洛丹, 等. 黄土高原沟壑区坡地土壤水分状态空间模拟[J]. 水科学进展, 2015, 26(5): 649-659.
    [11]
    王军, 傅伯杰. 黄土丘陵小流域土地利用结构对土壤水分时空分布的影响[J]. 地理学报, 2000,55(1): 84- 91.
    [12]
    胡伟, 邵明安, 王全九. 黄土高原退耕坡地土壤水分空间变异性研究[J]. 水科学进展, 2006, 17(1): 74-81.
    [13]
    Penna D, Borga M, Norbiato D, et al. Hillslope scale soil moisture variability in a steep alpine terrain [J]. Journal of Hydrology, 2009, 364(3-4): 311-327.
    [14]
    李小英, 段争虎. 基于SMOS的黄土高原区域尺度表层土壤水分时空变化[J]. 中国沙漠, 2014, 34(1): 133-139.
    [15]
    李阳兵, 高明, 魏朝富, 等. 岩溶山地不同土地利用土壤的水分特性差异[J]. 水土保持学报, 2003, 5(17): 63-66.
    [16]
    彭晚霞, 宋同清, 曾馥平,等. 喀斯特峰丛洼地旱季土壤水分的空间变化及主要影响因子[J]. 生态学报, 2010, 30(24): 6787-6797.
    [17]
    付爱红, 陈亚宁, 李卫红, 等. 干旱, 盐胁迫下的植物水势研究与进展[J]. 中国沙漠, 2005, 25(5): 744-749.
    [18]
    Sellès, G, Berger A . Physiological indicators of plant water status as criteria for irrigation scheduling [J]. Acta Horticulturae, 1990(278):87-100.
    [19]
    张清林.滴灌成龄核桃树叶水势变化规律及其影响因素的研究[D]. 新疆, 乌鲁木齐, 新疆农业大学, 2011.
    [20]
    刘志敏.水分胁迫对盆栽桃树生长的影响[D].北京:中国农业大学, 2002.
    [21]
    Jones H G, Lakso A N, Syvertsen J P. Physiological control of water status in temperate and subtropical fruit trees [J]. Horticultural Reviews, 1985, 7: 301-344.
    [22]
    冉辛拓, 郝宝锋, 张新生. 干旱过程中苹果茎水势和叶水势的变化研究[J]. 河北农业科学, 2009, 13(4): 16-17.
    [23]
    曹建华, 邓艳, 杨慧, 等. 喀斯特断陷盆地石漠化演变及治理技术与示范[J]. 生态学报, 2016, 36(22): 7103-7108.
    [24]
    Noy-Meir I. Desert ecosystems: environment and producers [J]. Annual Review of Ecology and Systematics, 1973, 4(1): 25-51.
    [25]
    Breshears D D, McDowell N G, Goddard K L, et al. Foliar absorption of intercepted rainfall improves woody plant water status most during drought [J]. Ecology, 2008, 89(1): 41-47.
    [26]
    Munné-Bosch S, Alegre L. Role of dew on the recovery of water-stressed Melissa officinalis L. plants [J]. Journal of Plant Physiology, 1999, 154(5-6): 759-766.
    [27]
    Qian D Y, Gong D, Leung R. Light rain events change over North America, Europe, and Asia for 1973-2009 [J]. Atmospheric Science Letters, 2010, 11(4):301-306.
    [28]
    Sala O E, Lauenroth W K, Parton W J. Long-term soil water dynamics in the shortgrass steppe [J]. Ecology, 1992, 73(4): 1175-1181.
    [29]
    龚元石, 廖超子, 李保国. 土壤含水量和容重的空间变异及其分形特征[J]. 土壤学报, 1998, 35(1): 10-15.
    [30]
    邱扬,傅伯杰, 王军, 等. 黄土丘陵小流域土壤水分时空分异与环境关系的数量分析[J]. 生态学报, 2000, 20(5): 741-747.
    [31]
    刘效东, 乔玉娜, 周国逸. 土壤有机质对土壤水分保持及其有效性的控制作用[J]. 植物生态学报, 2011, 35(12): 1209-1218.
    [32]
    张继光, 苏以荣, 陈洪松, 等. 典型岩溶洼地土壤水分的空间分布及影响因素[J]. 生态学报, 2014, 34(12): 3405-3413.
    [33]
    郭小娇, 龚晓萍, 汤庆佳, 等. 典型岩溶山坡土壤剖面水分对降雨响应过程研究[J]. 中国岩溶, 2016, 35(6): 629-638.
    [34]
    Knapp A K, Fahnestock J T, Hamburg S P, et al. Landscape Patterns in Soil‐Plant Water Relations and Primary Production in Tallgrass Prairie. Ecology, 1993, 74(2): 549-560.
    [35]
    黄代民, 陈效民, 李孝良, 等. 西南喀斯特地区土壤水分变异性研究[J]. 中国农学通报, 2010, 26(13): 207-212.
    [36]
    王思砚, 苏维词, 范新瑞, 等. 喀斯特石漠化地区土壤含水量变化影响因素分析:以贵州省普定县为例[J]. 水土保持研究, 2010, 17(3): 171-175.
    [37]
    王德炉, 朱守谦, 黄宝龙. 石漠化过程中土壤理化性质变化的初步研究[J]. 山地农业生物学报, 2003, 22(3): 204-207.
    [38]
    郝仲勇, 杨培岭, 刘洪禄, 等. 苹果树根系分布特性的试验研究[J]. 中国农业大学学报, 1998(6):63-66.
    [39]
    杨 凯, 郝锋珍, 续海红, 等. 果树根系分布研究进展[J]. 中国农学通报, 2015, 31(22):130-135.
    [40]
    张鸣, 张仁陟, 蔡立群. 不同耕作措施下春小麦和豌豆叶水势变化及其与环境因子的关系[J]. 应用生态学报, 2008, 19(7): 1467-1474.
    [41]
    蒯斌. 蓄水坑灌条件下苹果树根系吸水模型试验研究[D]. 太原:太原理工大学, 2008.
    [42]
    郭连生, 田有亮. 9种针阔叶幼树的蒸腾速率, 叶水势与环境因子关系的研究[J]. 生态学报, 1992, 12(1): 47-52.
    [43]
    Wang Z, Zerihum D, Feyen J. General irrigation efficiency for field water management [J]. Agricultural Water Management, 1996, 30(2): 123-132.
    [44]
    Grimes DW, Yamada H, Hughes SW. Climate-normalized cotton leaf water potentials for irrigation scheduling [J]. Agricultural Water Management, 1987,12(4):293-304.
    [45]
    吴玉, 郑新军, 李彦. 不同功能型原生荒漠植物对小降雨的光合响应[J]. 生态学杂志, 2013,32(10): 2591-2597.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2056) PDF downloads(474) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return